DOI QR코드

DOI QR Code

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science)
  • Received : 2009.07.07
  • Accepted : 2009.11.18
  • Published : 2010.09.25

Abstract

An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Keywords

References

  1. Akle, B.J., Bennett, M.D. and Leo, D.J. (2006), "High-strain ionomeric ionic liquid electroactive actuators", Sensor. Actuat. A-Phys., 126(1), 173-181. https://doi.org/10.1016/j.sna.2005.09.006
  2. Arora, J.S. (2004), Introduction to optimum design, 2nd Edition, Elsevier Academic Press, San Diego, California, USA.
  3. Azuma, A., Azuma, S., Watanabe, I. and Furuta, T. (1985), "Flight mechanics of a dragonfly", J. Exp. Biol., 116(1), 79-107.
  4. Bar-Cohen, Y. (Editor) (2004), Electroactive Polymer (EAP) actuators as artificial muscles - Reality, potential, and challenges, 2nd Edition, SPIE Press, Bellingham, Washington, USA.
  5. Betteridge, D.S. and Archer, R.D. (1974), "A study of the mechanics of flapping wings", Aeronaut. Q., 25, 129-142. https://doi.org/10.1017/S0001925900006892
  6. Bohorquez, F., Samuel, P., Sirohi, J., Pines, D., Rudd, L. and Perel, R. (2003), "Design, analysis and hover performance of a rotary wing micro air vehicle", J. Am. Helicopter Soc., 48(2), 80-90. https://doi.org/10.4050/JAHS.48.80
  7. Buechler, M.A. and Leo, D.J. (2007), "Characterization and variational modeling of ionic polymer transducers", J. Vib. Acoust., 129(1), 113-120. https://doi.org/10.1115/1.2424973
  8. Carrion, J.E. and Spencer, Jr. B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
  9. Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103
  10. Combes, S.A. and Daniel, T.L. (2003), "Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending", J. Exp. Biol., 206(17), 2989-2997. https://doi.org/10.1242/jeb.00524
  11. Cosyn, P. and Vierendeels, J. (2007), "Design of fixed wing micro air vehicles", Aeronaut. J., 111(1119), 315-326. https://doi.org/10.1017/S0001924000004565
  12. Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M. and Garcia, E. (2002), "The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles", J. Intel. Mat. Syst. Str., 13(9), 611-615. https://doi.org/10.1106/104538902032463
  13. DeLaurier, J.D. (1993), "An aerodynamic model for flapping-wing flight", Aeronaut. J., 97(964), 125-130.
  14. Deng, X., Schenato, L., Wu, W.C. and Sastry, S.S. (2006), "Flapping flight for biomimetic robotic insects: Part I - System modeling", IEEE T. Robot., 22(4), 776-788. https://doi.org/10.1109/TRO.2006.875480
  15. Dudley, R. (2000), The biomechanics of insect flight - Form, function and evolution, Princeton University Press, Princeton, New Jersey.
  16. Grasmeyer, J.M. and Keennon, M.T. (2001), Development of the black widow micro air vehicle, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications (Ed. T.J. Mueller), Progress in Astronautics and Aeronautics Series, AIAA, Reston, VA, USA.
  17. Hein, B.R. and Chopra, I. (2007), "Hover performance of a micro air vehicle: Rotors at low Reynolds number", J. Am. Helicopter Soc., 52(3), 254-262. https://doi.org/10.4050/JAHS.52.254
  18. Ke, S., Zhigang, W. and Chao, Y. (2008), "Analysis and flexible structural modeling for oscillating wing utilizing aeroelasticity", Chin. J. Aeronaut., 21(5), 402-410. https://doi.org/10.1016/S1000-9361(08)60052-7
  19. Kim, S.M. and Kim, K.J. (2008), "Palladium buffer-layered high performance Ionic Polymer-Metal Composites", Smart Mater. Struct., 17(6), 1363-1368.
  20. Kim, J.M. and Koratkar, N. (2005), "Effect of unsteady blade pitching motion on aerodynamic performance of microrotorcraft", J. Aircraft, 42(4), 874-881. https://doi.org/10.2514/1.6732
  21. Liu, S.C. (2008), "Sensors, smart structures technology and steel structures", Smart Struct. Syst., 4(5), 517-530. https://doi.org/10.12989/sss.2008.4.5.517
  22. Lee, S., Park, H.C. and Kim, K.J. (2005), "Equivalent modeling for Ionic Polymer-Metal Composite actuators based on beam theories", Smart Mater. Struct., 14(6), 1363-1368. https://doi.org/10.1088/0964-1726/14/6/028
  23. Lee, S.G., Park, H.C. and Pandia, S.D. (2006), "Performance improvement of IPMC (Ionic Polymer Metal Composites) for a flapping actuator", Int. J. Control Autom. Syst., 4(6), 748-755.
  24. Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite element", Smart Struct. Syst., 5(1), 23-42. https://doi.org/10.12989/sss.2009.5.1.023
  25. McIntosh, S.H., Agrawal, S.K. and Khan, Z. (2006), "Design of a mechanism for biaxial rotation of a wing for a hovering vehicle", IEEE-ASME T. Mech., 11(2), 145-153. https://doi.org/10.1109/TMECH.2006.871089
  26. Nelson, J. and Koratkar, N. (2005), "Effect of miniaturized gurney flaps on aerodynamic performance of microscale rotors", J. Aircraft, 42(2), 557-561. https://doi.org/10.2514/1.9473
  27. Okamoto, M. and Azuma, A. (2005), "Experimental study on aerodynamic characteristics of unsteady wings at low Reynolds number", AIAA J., 43(12), 2526-2536. https://doi.org/10.2514/1.14813
  28. Park, H.C., Lee, S.K. and Kim, K.J. (2005a), "Equivalent modeling for shape design of IPMC (Ionic Polymer Metal Composite) as flapping actuator", Key Eng. Mater., 297-300, 616-621. https://doi.org/10.4028/www.scientific.net/KEM.297-300.616
  29. Park, S., Yun, C.B., Roh, Y. and Lee, J.J. (2005b), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  30. Pines, D.J. and Bohorquez, F. (2006), "Challenges facing future micro-air-vehicle development", J. Aircraft, 43(2), 290-305. https://doi.org/10.2514/1.4922
  31. Ramasamy, M. and Leishman, J.G. (2006), "Phase-locked particle image velocimetry measurements of a flapping wing", J. Aircraft, 43(6), 1867-1875. https://doi.org/10.2514/1.21347
  32. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J. (1998), "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review", Smart Mater. Struct., 7(6), R15-R30. https://doi.org/10.1088/0964-1726/7/6/001
  33. Shyy, W., Berg, M. and Ljungqvist, D. (1999), "Flapping and flexible wings for biological and micro air vehicles", Prog. Aerosp. Sci., 35(5), 455-505. https://doi.org/10.1016/S0376-0421(98)00016-5
  34. Singh, B. and Chopra, I. (2008), "Insect-based hover-capable flapping wings for micro air vehicles: Experiments and analysis", AIAA J., 46(9), 2115-2135. https://doi.org/10.2514/1.28192
  35. Sirohi, J., Parsons, E. and Chopra, I. (2007), "Hover performance of a cycloidal rotor for a micro air vehicle", J. Am. Helicopter Soc., 52(3), 263-279. https://doi.org/10.4050/JAHS.52.263
  36. Tanaka, K., Oonuki, M., Moritake, N. and Uchiki, H. (2009), "$Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing", Sol. Energ. Mat. Sol. C., 93(5), 583-587. https://doi.org/10.1016/j.solmat.2008.12.009
  37. Tarascio, M.J., Ramasamy, M., Chopra, I. and Leishman, J.G. (2005), "Flow visualization of micro air vehicle scaled insect-based flapping wings", J. Aircraft, 42(2), 385-390. https://doi.org/10.2514/1.6055
  38. Tiwari, R., Kim, K.J. and Kim, S.M. (2008), "Ionic polymer-metal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549
  39. Wakeling, J.M. and Ellington, C.P. (1997), "Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces", J. Exp. Biol., 200(3), 543-556.
  40. Wang, Z.J. (2000), "Vortex shedding and frequency selection in flapping flight", J. Fluid Mech., 410, 323-341. https://doi.org/10.1017/S0022112099008071
  41. Willmott, A.P. and Ellington, C.P. (1997), "The mechanics of flight in the hawkmoth Manduca sexta I. Kinematics of hovering and forward flight", J. Exp. Biol., 200(21), 2705-2722.
  42. Wu, J.H. and Sun, M. (2004), "Unsteady aerodynamic forces of a flapping wing", J. Exp. Biol., 207(23), 1137-1150. https://doi.org/10.1242/jeb.00868
  43. Yamamoto, M. and Isogai, K. (2005), "Measurement of unsteady fluid dynamics forces for a mechanical dragonfly model", AIAA J., 43(12), 2475-2480. https://doi.org/10.2514/1.15899
  44. Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2009), "A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers", Smart Struct. Syst., 5(1), 69-79. https://doi.org/10.12989/sss.2009.5.1.069
  45. Zeng, L., Matsumoto, H. and Kawachi, K. (1996), "A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing", Meas. Sci. Technol., 7(5), 776-781. https://doi.org/10.1088/0957-0233/7/5/009

Cited by

  1. Elucidating Multiscale Periosteal Mechanobiology: A Key to Unlocking the Smart Properties and Regenerative Capacity of the Periosteum? vol.19, pp.2, 2013, https://doi.org/10.1089/ten.teb.2012.0216
  2. A Review of Biomimetic Air Vehicle Research: 1984-2014 vol.7, pp.3, 2015, https://doi.org/10.1260/1756-8293.7.3.375
  3. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings vol.122, pp.1, 2016, https://doi.org/10.1007/s00339-015-9557-6
  4. Nanomaterial-based ionic polymer metal composite insect scale flapping wing actuators vol.23, pp.11, 2016, https://doi.org/10.1080/15376494.2015.1068409
  5. Smart body armor inspired by flow in bone vol.7, pp.3, 2011, https://doi.org/10.12989/sss.2011.7.3.223
  6. Structural modeling of actuation of IPMC in dry environment: effect of water content and activity vol.19, pp.5, 2010, https://doi.org/10.12989/sss.2017.19.5.553
  7. Dynamic modeling and control of IPMC hydrodynamic propulsor vol.20, pp.4, 2010, https://doi.org/10.12989/sss.2017.20.4.499