High Directivity Sound Beamforming Algorithm

방향성이 높은 사운드 빔 형성 알고리즘

  • 김성우 (연세대학교 디지털 신호처리 연구실) ;
  • 허유미 (연세대학교 디지털 신호처리 연구실) ;
  • 박영철 (연세대학교 멀티미디어 신호처리 연구실) ;
  • 윤대희 (연세대학교 디지털 신호처리 연구실)
  • Published : 2010.01.31


This paper proposes a technique of sound beamforming that can generate high-directive sound beams, and this paper also presents applications of the proposed algorithm to multi-channel 3D sound systems. The proposed algorithm consists of two phases: first, optimum weights maximizing a sound pressure level ratio between the target and control acoustic regions are designed, and later, the directivity of the pre-designed sound beam is iteratively enhanced by modifying the covariance matrix. The proposed method was evaluated under various situations, and the results showed that it could provide more focused sound beams than the conventional methods.

본 논문에서는 스피커 어레이를 사용하여 높은 방향성을 가진 사운드 빔을 형성하는 알고리즘을 제안하고, 제안된 알고리즘을 멀티 채널 3D사운드 시스템에 적용하는 방법을 설명한다. 제안된 알고리즘은 두 과정을 거친다. 첫 번째 과정에서는 표적 지점과 제어 영역간의 음향 파워 비를 최대화 하는 최적 빔 형성 계수를 구하고, 다음 과정에서는 상관행렬을 조절해 가면서 사운드 빔의 방향성을 반복적으로 향상시킨다. 여러 가지 상황에서 제안된 알고리즘의 성능을 평가하였으며, 실험 결과는 제안된 알고리즘이 기존의 방법들에 비해 더 높은 방향성을 갖는 사운드 빔을 제공함을 보였다.



  1. Y. Tama, S. Kagami, H. Mizoguchi, and K. Nagashima, "Simultaneous generation capture of multiple focuses soundbeams," IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4613-4618, Oct. 2003.
  2. Y. Konagai, "Array speaker system," Yamaha corp.. 2007.
  3. C. A Olen and R. T. Compton Jr., "A numerical pattern synthesis algorithm for arrays," IEEE Transaction on Antennas and Propagations, vol. 38, issue 10, pp. 1666-1676, Oct. 1990. https://doi.org/10.1109/8.59781
  4. M. Brandstein and D. Ward, Microphone Arrays, Springer, New York, 2001.
  5. J. G. Ryan and R. A. Goubran, "Optimum near-field response for microphone arrays," IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 4, Oct. 1997.
  6. J. Gobert. "Adaptive beam weighting." IEEE Transaction on Antennas and Propagation, vol. 24. issue 5, pp. 744-749, Sep. 1976. https://doi.org/10.1109/TAP.1976.1141398
  7. Q. Guo, G. Uao, Y. Wu, and J. Li, "Pattern synthesis method for arbitrary arrays based on LCMV criterion," IEEE Electronics Letters, vol. 39, issue 23, pp, 1628-1630, Nov. 2003. https://doi.org/10.1049/el:20031068
  8. E. J. Baranoski, A. O. Steinhardt, and W. P. Ballance, "Subspace recombination of multiple partially adaptive beam-former outputs," IEEE International Conference on Acoustics, Speech, and Signal Processing, vol, 5, pp. 2860-2863, May 1996.
  9. M. H. Er, L. L. Sim, and S. N. Koh, "Application of constrained optimization techniques to array antenna synthesis," Signal Processing Journal, vol. 34, pp.323-334, Feb. 1993. https://doi.org/10.1016/0165-1684(93)90139-2
  10. P. Y. Zhou and M. A Ingram. "Pattern synthesis for arbitrary arrays using an adaptive array method," IEEE Transaction on Antennas and Propagations, vol. 47, Issue 5, pp.862-869, May 1999. https://doi.org/10.1109/8.774142
  11. J. G. Ryan, "Criterion for the minimum source distance at which planewave beamforming can be applied," J. Acoust. Soc. Am., vol. 104, issue 1, pp. 595-598, July 1998. https://doi.org/10.1121/1.423289
  12. C. F. Gerald and P, O. Wheatley, Applied Numerical Analysis, Addison-Wesley, California, 1984.
  13. J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," J. Acoust. Soc. Am., vol. 65, no, 4, pp, 943 - 950, 1979. https://doi.org/10.1121/1.382599