DOI QR코드

DOI QR Code

Analysis of the Cylindrical Metamaterial Slab Using the Higher Order-mode Finite Difference Time Domain Method

고차모드 시간영역 유한차분법을 이용한 원통형 메타물질 Slab의 해석

  • 홍익표 (공주대학교 정보통신공학부)
  • Published : 2010.01.30

Abstract

In this paper, the higher order FDTD(Finite-Difference Time-Domain) method is used to obtain the frequency response characteristics of the cylindrical metamaterial slab. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity and the dispersive FDTD equation which has the dispersive effective dielectric constant and permeability are derived to analyze the metamaterials. This derived dispersive FDTD equation has no errors in analyzing the dielectric materials but there are some time and frequency errors in case of analyzing the metamaterials. We used the higher order FDTD method to obtain the accurate frequency response of the metamaterials. Comparisons between the dispersive FDTD method and the higher order FDTD method are performed in this paper also. From the results, we concluded that more accurate frequency response for various metamaterials applications can be obtained using the proposed method in this paper.

본 논문에서는 고차모드 시간영역 유한차분법(FDTD)을 이용하여 원통형 메타물질 Slab의 주파수 영역 특성을 정확하게 구하는 방법을 연구하였다. 메타물질의 해석방법에는 분산매질 FDTD방정식이 가장 광범위하게 사용되는데 주파수 분산특성을 갖는 유전율과 투자율 모델을 가정하기 때문에, 주파수 응답특성을 구하기 위해서는 주파수 영역에서 차분방정 식을 전개해야 한다. 본 논문에서는 고차모드 FDTD 방법을 유도하여 기존의 분산매질 FDTD 방법과 비교하여 유전체물질에서는 동일한 결과를 얻을 수 있지만 메타물질 해석에서는 오차가 발생을 한다는 것을 확인하였다. 원통형 메타물질 Slab을 해석하기 위해서 고차모드 FDTD 방법을 이용하면 계산오차를 줄일 수 있고 정확한 주파수 특성을 얻을 수 있다. 본 논문에서 제안한 방법을 사용하면 메타물질을 이용한 다양한 회로구조에 대하여 정 확한 주파수 특성을 얻을 수 있다.

Keywords

References

  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities", Soviet Physics Uspekbi, vol. 10, no. 4, pp. 5-13, Jan-Feb., 1968.
  2. J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters, vol. 76, No. 25, pp. 4773-4776, Jun., 1996. https://doi.org/10.1103/PhysRevLett.76.4773
  3. J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, "Magnetism from conductors and enhanced linear media," IEEE Trans. Microwave Theory Tech., vol. 47, no. 11. pp. 2075-2084, Nov. 1999. https://doi.org/10.1109/22.798002
  4. R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verifications of a negative index of refraction," Science, vol. 292, pp. 77-79, 6 April. 2001. https://doi.org/10.1126/science.1058847
  5. N. Engheta and R. W. Ziolkowski, Metamaterials : Physics and Engineering Explorations, IEEE, 2006.
  6. C. Caloz and T. Itoh, Electromagnetic Metamaterials, John Wiley &Sons, 2006.
  7. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, Boston, 3rd Ed., Artech House, 2005.
  8. M. W. Feise, J. B. Schneider, and P. J. Bevelacqua, "Finite-difference and pseudospectral time-domain methods applied to backward- wave metamaterials," IEEE Trans. Antennas Propagat., vol. 52, pp. 2955-2962, Nov.2004. https://doi.org/10.1109/TAP.2004.835274
  9. Y. Zhao, P. Belov and Y. Hao, "Improvement of Numerical Accuracy in FDTD Modelling of Left-Handed Metamaterials," 2006 lET Seminar on Metamaterials for Microwave and Millimeterwave Applications, pp.153-157, Sept. 2006.
  10. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, pp. 1630-1639,1996. https://doi.org/10.1109/8.546249
  11. A. A. Sukhorukov, I. V. Shadrivov, and Y. S. Kivshar, "Wave scattering by metamaterial wedges and interfaces," Int. J. Numer. Model. Vol. 19, pp. 105-117. Mar. 2006. https://doi.org/10.1002/jnm.602
  12. Y. Hao, L. Lu, and C. G. Parini, "Time-domain modeling on wave propagation through single/multilayer left-handed meta-materials slabs," ICAP 2003, Vol.2, pp.610-613, Apr. 2003
  13. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phy& Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., Vol. 64, pp.056 625/1-056 625/15, Nov. 2001.