Long-Range Dependence and 1/f Noise in a Wide Area Network Traffic

광역 네트워크 트래픽의 장거리 상관관계와 1/f 노이즈

  • 이창용 (공주대학교 산업시스템공학과)
  • Published : 2010.02.15

Abstract

In this paper, we examine a long-range dependence in an active measurement of a network traffic which has been a well known characteristic from analyses of a passive network traffic measurement. To this end, we utilize RTT(Round Trip Time), which is a typical active measurement measured by PingER project, and perform a relevant analysis to a time series of both RTT and its volatilities. The RTT time series exhibits a long-range dependence or a 1/f noise. The volatilities, defined as a higher-order variation, follow a log-normal distribution. Furthermore, volatilities show a long-range dependence in relatively short time intervals, and a long-range dependence and/or 1/f noise in long time intervals. From this study, we find that the long-range dependence is a characteristic of not only a passive traffic measurement but also an active measurement of network traffic such as RTT. From these findings, we can infer that the long-range dependence is a characteristic of network traffic independent of a type of measurements. In particular, an active measurement exhibits a 1/f noise which cannot be usually found in a passive measurement.

본 논문에서는 네트워크 트래픽의 수동적 측정치 분석을 통해 잘 알려진 장거리 상관관계가 광역 네트워크의 능동적 측정치에도 존재하는지 여부를 관련 분석법을 통하여 검정하고자 한다. 이를 위하여 PingER 프로젝트를 통하여 측정된 광역 네트워크 트래픽의 대표적인 능동적 측정치인 RTT(Round Trip Time)와 RTT의 변동성 시계열 데이터에 대하여 분석을 수행하였다. RTT 시계열 데이터는 장거리 상관관계 혹은 1/f 노이즈의 특성을 보였으며, RTT의 고차원 변화량으로 정의된 변동성은 로그정규분포를 따르며 변동성에 대한 장거리 상관관계는 고려하는 시간 간격이 짧은 경우 장거리 상관관계를 보이고, 시간 간격이 긴 경우에는 장거리 상관관계 혹은 1/f 노이즈를 따름을 밝혔다. 본 연구를 통해 볼 때 장거리 상관관계는 비단 패킷 도착의 시간 간격 등과 같은 수동적 측정뿐만 아니라 RTT와 같은 능동적 측정에서도 나타나는 특징이며, 특히 능동적 측정에는 수동적 측정에는 잘 나타나지 않는 1/f 노이즈 특성이 존재함을 밝혔다.

Keywords

References

  1. Paxson, V., "Growth trends in wide-area TCP connections," IEEE Network, vol.8, no.4, pp.8-17, 1994. https://doi.org/10.1109/65.298159
  2. Leland, W., Taqqu, M., Willinger, W., and Wilson, D., "The Self-similar nature of Ethernet traffic," IEEE/ACM Trans. Net., vol.2, no.1, pp.1-15, 1994. https://doi.org/10.1109/90.282603
  3. Paxson, V. and Floyd, S., "Wide-Area traffic: The failure of Poisson modeling," IEEE/ACM Trans. Net., vol.3, no.3, pp.226-244, 1995. https://doi.org/10.1109/90.392383
  4. Lee, C., "Higher-Order Correlations in Data Network Traffic," J. Korean Phys. Soc., vol.45, no.6, pp.1664-1670, 2004.
  5. Willinger, W., Taqqu, M., Sherman, R., and Wilson, D., "Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level," IEEE/ACM Trans. Net., vol.5, no.1, pp.71-86, 1997. https://doi.org/10.1109/90.554723
  6. Takayasu, M., Takayasub, H., and Fukudac, K., "Dynamic phase transition observed in the Internet traffic flow," Physica A, vol.277, pp.248-255, 2000. https://doi.org/10.1016/S0378-4371(99)00499-9
  7. Nakayama, A., "Critical behaviors and self-similarity in models of computer network traffic," Physica A, vol.293, pp.285-296, 2001. https://doi.org/10.1016/S0378-4371(01)00023-1
  8. Claffy, K., "Internet measurement and data analysis: topology, workload, performance, and routing statistics," NAE '99 workshop, 1999; available at http:// www.caida.org/outreach/papers/1999/Nae
  9. http://www-iepm.slac.stanford.edu/pinger/
  10. Veitch, D., Hohn, N., Abry, P., "Multifractality in TCP/IP traffic: the case against," Computer Networks, vol.48, pp.293-313, 2004.
  11. Ribeiro, V., Zhang, Z., Moon, S., Diot, C., "Smalltime scaling behavior of Internet backbone traffic," Computer Networks, vol.48, pp.315-334, 2005. https://doi.org/10.1016/j.comnet.2004.11.012
  12. Scherrer, A., Larrieu, N., Owezarski, P., Borgnat, P., Abry, P., "Non-Gaussian and Long Memory Statistical Characterizations for Internet Traffic with Anomalies," IEEE Transactions of dependable and secure computing, vol.4, pp.56-70, 2007.
  13. Xiao-Yan, Z., Zong-Hua, L., Ming, T., "Detrended Fluctuation Analysis of Traffic Data," Chinese Phys. Lett., vol.24 pp.2142-2145, 2007. https://doi.org/10.1088/0256-307X/24/7/099
  14. Beran, J., Statistics for Long-memory Processes, Chapman & Hall/CRC, 1994.
  15. Karagiannis, T., Molle, M., and Faloutsos, M., "Long-Range Dependence: Ten Years of Internet Traffic Modeling," IEEE Internet Computing, vol.8, no.5, pp.57-64, 2004. https://doi.org/10.1109/MIC.2004.46
  16. Peng, C. et al., "Mosaic organization of DNA nucleotides," Phys. Rev. E., vol.40, no.2, pp.1685-1689, 1994.
  17. Peng, C. et al., "Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series," Chaos, vol.5, no.1, pp.82-87, 1995. https://doi.org/10.1063/1.166141
  18. Bak, P., Tang, C., and Wiesenfeld, K., "Selforganized criticality: An explanation of the 1/f noise," Phys. Rev. Lett., vol.59, no.4, pp.381-384, 1987. https://doi.org/10.1103/PhysRevLett.59.381
  19. Muller, U. et al., "Volatilities of different time resolutions-Analyzing the dynamics of market components," J. Empirical Finance, vol.4, pp.213-239, 1997. https://doi.org/10.1016/S0927-5398(97)00007-8
  20. Hogg, R. and Craig, A., Introduction to mathematical statistics, 4th Ed., Macmillan Publishing Co., New York, 1978.
  21. Liu, Y., Gopikrishnan. P., Cizeau, P., Meyer, M., Peng, C-K., and Stanley, H. E., "Statistical properties of the volatility of price fluctuations," Phys. Rev. E., vol.60, no.2, pp.1390-1400, 1999. https://doi.org/10.1103/PhysRevE.60.1390
  22. Lee. C., "Characteristics of the volatility in the Korea composite stock price index," Physica A, vol.388, pp.3837-3850, 2009. https://doi.org/10.1016/j.physa.2009.06.004
  23. Engle, R., "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, vol.50, no.4, pp.987-1007, 1982. https://doi.org/10.2307/1912773
  24. Bollerslev, T., "Generalized autoregressive conditional heteroskedasticity," J. Econometrics, vol.31, no.3, pp.307-327, 1986. https://doi.org/10.1016/0304-4076(86)90063-1