DOI QR코드

DOI QR Code

Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy

라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동

  • Hong, Won-Eui (Department of Materials Science and Engineering, Hongik University) ;
  • Ro, Jae-Sang (Department of Materials Science and Engineering, Hongik University)
  • 홍원의 (홍익대학교 공과대학 신소재 공학과) ;
  • 노재상 (홍익대학교 공과대학 신소재 공학과)
  • Published : 2010.02.28

Abstract

Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

Keywords

References

  1. A. T. Voutsas, M. K. Hatalis, J. Electrochem. Soc. 139 (1992) 2659. https://doi.org/10.1149/1.2221280
  2. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89. https://doi.org/10.1063/1.1753975
  3. S.-W. Lee, S.-K. Joo, IEEE Electron Dev. Lett. 17 (1996) 160. https://doi.org/10.1109/55.485160
  4. J. S. Im, H. J. Kim, M. O. Thompson, Appl. Phys. Lett. 63 (1993) 2969.
  5. M. Wu, K. Pangal, J. C. Sturm, S. Wagner, Appl. Phys. Lett. 75 (1999) 2244. https://doi.org/10.1063/1.124978
  6. R. S. Howel, M. Stewart, S. V. Karnik, S. K. Saha, M. K. Hatalis, IEEE Electron Device Lett., 21 (2000) 70. https://doi.org/10.1109/55.821670
  7. M. Wu, X.-Z. Bo, J. C. Sturm, S. Wagner, IEEE Electron Device Lett., 49(11) (2002) 1993. https://doi.org/10.1109/TED.2002.804702
  8. J. H. Cheon, J. H. Bae, J. Jang, Solid State Electronics, 52 (2008) 473. https://doi.org/10.1016/j.sse.2007.10.019
  9. J.-S. Ro, W.-E. Hong, SID 2006 Digest of Technical Papers, (2006) 1280.
  10. W.-E. Hong, J.-S. Ro, Thin Solid Films, 13 (2007) 515.
  11. Y. Ishikawa, Y. Yamamoto, T. Hatayama, Y. Uroka T. Fuyuki, PVSEC 12 (2001) 11.
  12. Jian Zi, H. Büscher, C. Falter, W. Ludwig, Kaiming Zhang, Xide Xie, Appl. Phys. Lett. 69 (1996) 200. https://doi.org/10.1063/1.117371
  13. I.-W. Wu, A. Chiang, M. Fuse, L. Ovecoglu, T. Y. Huang, J. Appl. Phys. 65 (1989) 4036. https://doi.org/10.1063/1.343327
  14. J. H. Kim, J. Y. Lee, J. Appl. Phys. 79 (1996) 1794. https://doi.org/10.1063/1.360971