DOI QR코드

DOI QR Code

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films

산화아연 나노구조 박막의 일산화탄소 가스 감지 특성

  • Hung, Nguyen Le (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 웬래훙 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Received : 2010.04.19
  • Accepted : 2010.05.07
  • Published : 2010.05.25

Abstract

We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Keywords

References

  1. C. A. Grimes, E. C. Dickey and M. V. Pishko, ed., Encyclopedia of Sensors, American Scientific Publishers (2006).
  2. M. Aslam, V. A. Chaudhary, I. S. Mulla, S. R. Sainkar, A. B. Mandale, A. A. Belhekar and K. Vijaymohanan, Sens. Actuators A, 75, 162 (1999). https://doi.org/10.1016/S0924-4247(99)00050-3
  3. Y. Min, H. L. Tuller, S. Palzer, J. Wöllenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003). https://doi.org/10.1016/S0925-4005(03)00170-9
  4. J. Muller and S. Weibenrieder, Fresenius J. Anal. Chem., 349, 380 (1994). https://doi.org/10.1007/BF00326603
  5. J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, Sens. Actuators B, 84, 258 (2002). https://doi.org/10.1016/S0925-4005(02)00034-5
  6. M. -H. Lin, S. -J. Tzeng, P. -J. Hsiau and W. L. Tsai, Nanostructured Mater., 10, 465 (1998). https://doi.org/10.1016/S0965-9773(98)00087-7
  7. H. Gong, J. Q. Hu, C. H. Ong and F. R. Zhu, Sens. Actuators B, 115, 247 (2006). https://doi.org/10.1016/j.snb.2005.09.008
  8. S. -J. Chang, T. -J. Hsueh, I. -C. Chen and B. -R. Huang, Nanotechnology, 19, 175502 (2008). https://doi.org/10.1088/0957-4484/19/17/175502
  9. R. K. Joshi, Q. Hu, F. Alvi, N. Joshi and A. Kumar, J. Phys. Chem. C, 113, 16199 (2009). https://doi.org/10.1021/jp906458b
  10. Y. Kang, D. Oh, H. Song, J. Jung, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 253 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.5.253
  11. S. -M. Park, S. -L. Zhang and J. -S. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.7.367
  12. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.12.655
  13. D. Y. Kim and J. Y. Son, Electrochem. Solid State Lett., 12, J109 (2009). https://doi.org/10.1149/1.3236797
  14. S. Ahlers, G. Muller and Th. Doll, in Encyclopedia of Sensors, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006).
  15. H. Nanto, T. T. Minami and S. Takata, J. Appl. Phys., 60, 482 (1986). https://doi.org/10.1063/1.337435
  16. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006). https://doi.org/10.1016/j.snb.2005.07.058
  17. R. W. J. Scott, S. M. Yang, G. Chabanis, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  18. W. C. Conner, Jr. and J. L. Falconer, Chem. Rev., 95, 759 (1995). https://doi.org/10.1021/cr00035a014

Cited by

  1. Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method vol.22, pp.4, 2012, https://doi.org/10.3740/MRSK.2012.22.4.180