DOI QR코드

DOI QR Code

Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.04.22
  • Accepted : 2010.05.11
  • Published : 2010.05.25

Abstract

The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-$TiO_2$ were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized $TiO_2$ were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor is $TiOSO_4{\cdot}xH_2O$ (TOS). An excellent photocatalytic activity of Fe/CNT-$TiO_2$ was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of $TiO_2$, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and $TiO_2$ components were responsible for improving the visible light photocatalytic activity.

Keywords

References

  1. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C., 1, 1 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  2. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  3. X. H. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi and T. Ishigaki, J. Phys. Chem. B., 110, 6804 (2006). https://doi.org/10.1021/jp060082z
  4. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani and M. R. Gholami, J. Hazard. Mater., 172, 1573 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.029
  5. D. Liu, P. V. Kamat, K. G. Thomas, K. J. Thomas, S. Das and M. V. George, J. Chem. Phys., 106, 6404 (1997). https://doi.org/10.1063/1.473631
  6. K. Zhang and W. C. Oh, Kor. J. Mater. Res., 20(1), 31 (2010). https://doi.org/10.3740/MRSK.2010.20.1.031
  7. R. Asahi, T. Morikawa, T. Ohwakl, K. Aoki and Y. Taga, Science., 293, 269 (2001). https://doi.org/10.1126/science.1061051
  8. H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Antonius and D. Meissner, Angew. Chem. Int. Ed., 37, 3034 (1998). https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<3034::AID-ANIE3034>3.0.CO;2-2
  9. K. Zhang, Z. D. Meng and W. C. Oh, Kor. J. Mater. Res., 20(3), 117 (2010). https://doi.org/10.3740/MRSK.2010.20.3.117
  10. W. C. Oh and M. L. Chen, J. Cer. Proc. Res., 8, 316 (2007).
  11. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. MitSui and M. Matsumura, Appl. Catal. A: Gen., 265, 115 (2004). https://doi.org/10.1016/j.apcata.2004.01.007
  12. S. Y. Treschev, P. W. Chou, Y. H. Tseng, J. B. Wang, E. V. Perevedentseva and C. L. Cheng, Appl. Catal. B: Environ., 79, 8 (2008). https://doi.org/10.1016/j.apcatb.2007.09.046
  13. E. Itoh, I. Suzuki and K. Miyairi, Jap. J. Appl. Phys., 44, 636 (2005). https://doi.org/10.1143/JJAP.44.636
  14. M. S. Dresselhaus, L. P. Biro, C. A. Bernardo, G. G. Tibbetts and P. Lambin, Carbon Filaments and Nanotubes:Common Origins, Differing Applications, Kulwer Academic Publishers, Dordrecht, 2000, p. 11.
  15. Y. Cong, J. L. Zhang, F. Chen, M. Anpo and D. He, J. Phys. Chem. C., 111, 10618 (2007). https://doi.org/10.1021/jp0727493
  16. F. J. Zhang, M. L. Chen, K. Zhang and W.C. Oh, Bull. Kor. Chem. Soc., 31, 133 (2010). https://doi.org/10.5012/bkcs.2010.31.01.133
  17. W. C. Oh, F. J. Zhang, and M. L. Chen, J. Ind. Eng. Chem., 16, 321 (2010). https://doi.org/10.1016/j.jiec.2010.01.032
  18. B. Tryba, M. Toyoda, Chemosphere., 60, 477 (2005). https://doi.org/10.1016/j.chemosphere.2005.01.031
  19. B. Tryba, A. W. Morawski, M. Inagaki and M. Toyoda, Chemosphere., 64, 1225 (2006). https://doi.org/10.1016/j.chemosphere.2005.11.035
  20. B. Tryba, M. Piszcz, B. Grzmil, A. Pattek-Janczyk and A. W. Morawski, J. Hazard. Mater., 162, 111 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.057
  21. C. Chen, W. Zhao, J. Li, J. Zhao and H. Hidaka, Environ. Sci. Technol., 36, 3604 (2002). https://doi.org/10.1021/es0205434
  22. X. W. Zhang and L. C. Lei, Appl. Sur. Sci., 254, 2406 (2008). https://doi.org/10.1016/j.apsusc.2007.09.067
  23. K. Zhang, Z. D. Meng, W. B. Ko and W. C. Oh, Analy. Sci & Technol., 22, 254 (2009).