DOI QR코드

DOI QR Code

Effects of Growth Conditions on Properties of ZnO Nanostructures Grown by Hydrothermal Method

수열합성법으로 성장된 ZnO 나노구조의 성장조건에 따른 특성

  • Cho, Min-Young (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University) ;
  • Jeon, Su-Min (Department of Nano Systems Engineering, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Dong-Yul (Samsung LED) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Jong-Su (Department of Physics, Yeungnam University) ;
  • Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 최현영 (인제대학교 나노시스템공학과) ;
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성 LED) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 이주인 (한국표준과학연구원) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.04.05
  • Accepted : 2010.05.10
  • Published : 2010.05.25

Abstract

ZnO nanostructures were grown on an Au seed layer by a hydrothermal method. The Au seed layer was deposited by ion sputter on a Si (100) substrate, and then the ZnO nanostructures were grown with different precursor concentrations ranging from 0.01 M to 0.3M at $150^{\circ}C$ and different growth temperatures ranging from $100^{\circ}C$ to $250^{\circ}C$ with 0.3 M of precursor concentration. FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), and PL (photoluminescence) were carried out to investigate the structural and optical properties of the ZnO nanostructures. The different morphologies are shown with different growth conditions by FE-SEM images. The density of the ZnO nanostructures changed significantly as the growth conditions changed. The density increased as the precursor concentration increased. The ZnO nanostructures are barely grown at $100^{\circ}C$ and the ZnO nanostructure grown at $150^{\circ}C$ has the highest density. The XRD pattern shows the ZnO (100), ZnO (002), ZnO (101) peaks, which indicated the ZnO structure has a wurtzite structure. The higher intensity and lower FWHM (full width at half maximum) of the ZnO peaks were observed at a growth temperature of $150^{\circ}C$, which indicated higher crystal quality. A near band edge emission (NBE) and a deep level emission (DLE) were observed at the PL spectra and the intensity of the DLE increased as the density of the ZnO nanostructures increased.

Keywords

References

  1. L. Vayssieres, K. Keis, A. Hagfeldt and S.-E. Lindquist, Chem. Mater., 13(12), 4395 (2001). https://doi.org/10.1021/cm011160s
  2. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys., 84(7), 3912 (1998). https://doi.org/10.1063/1.368595
  3. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn and H. Kalt, Appl. Phys. Lett., 91, 181112 (2007). https://doi.org/10.1063/1.2805073
  4. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81(19), 3648 (2002). https://doi.org/10.1063/1.1518810
  5. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery- Corvan and L. M. Irving, Appl. Phys. Lett., 92, 192101 (2008). https://doi.org/10.1063/1.2924768
  6. J. J. Wu and S. C. Liu, Adv. Mater., 14(3), 215 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J
  7. M. Qiu, Z. Ye, J. Lu, H. He, J. Huang, L. Zhu and B. Zhao, Appl. Surf. Sci., 255, 3972 (2009). https://doi.org/10.1016/j.apsusc.2008.10.093
  8. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila and S. J. Peaton, Appl. Phys. Lett., 85(11), 2002 (2003).
  9. S. K. Han, S. K. Hong, H. Kim, J. W. Lee and J. Y. Lee, Kor. J. Mater. Res., 16(6), 360 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.6.360
  10. X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, Appl. Surf. Sci., 239, 176 (2005). https://doi.org/10.1016/j.apsusc.2004.05.144
  11. E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Ojoursinniy, A. Wojcik, S. Yatsunenko, E. Lusakowska, W. Paszkowicz and M. Guziewicz, J. Appl. Phys., 103, 033515 (2008). https://doi.org/10.1063/1.2836819
  12. S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu and R. Zhang, Mater. Lett., 61, 30 (2007). https://doi.org/10.1016/j.matlet.2006.03.145
  13. S. O’Brken, L. H. K. Koh and G. M. Crean, Thin Solid Films, 516, 1391 (2008). https://doi.org/10.1016/j.tsf.2007.03.160
  14. J. M. Jang, J. Y. Kim and W. G. Jung, Thin Solid Films, 516, 8524 (2008). https://doi.org/10.1016/j.tsf.2008.05.017
  15. S. J. Kim, H. H. Kim, J. B. Kwon, J. G. Lee, B. H. O, S. G. Lee, E. H. Lee and S. G. Park, Microelectron. Eng., 87, 1534 (2010). https://doi.org/10.1016/j.mee.2009.11.033
  16. L. E. Greene, M. Law, H. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed., 42, 3031 (2003). https://doi.org/10.1002/anie.200351461
  17. S. A. Studeninkin, N. Golego and M. Cocivera, J. Appl. Phys., 84(4), 2287 (1998). https://doi.org/10.1063/1.368295
  18. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee and C. H. Park, Phys. Stat. Sol. (a), 203(10), 2418 (2006). https://doi.org/10.1002/pssa.200521398
  19. X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett., 78(16), 2285 (2001). https://doi.org/10.1063/1.1361288
  20. A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Nanotechnology, 18, 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702