DOI QR코드

DOI QR Code

MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS

  • Xiang, Yueming (College of Mathematics and Computer Science Hunan Normal University, College of Mathematics and Computer Science Yichun University)
  • Received : 2008.12.21
  • Published : 2010.05.31

Abstract

A ring R is called left max-coherent provided that every maximal left ideal is finitely presented. $\mathfrak{M}\mathfrak{I}$ (resp. $\mathfrak{M}\mathfrak{F}$) denotes the class of all max-injective left R-modules (resp. all max-flat right R-modules). We prove, in this article, that over a left max-coherent ring every right R-module has an $\mathfrak{M}\mathfrak{F}$-preenvelope, and every left R-module has an $\mathfrak{M}\mathfrak{I}$-cover. Furthermore, it is shown that a ring R is left max-injective if and only if any left R-module has an epic $\mathfrak{M}\mathfrak{I}$-cover if and only if any right R-module has a monic $\mathfrak{M}\mathfrak{F}$-preenvelope. We also give several equivalent characterizations of MI-injectivity and MI-flatness. Finally, $\mathfrak{M}\mathfrak{I}$-dimensions of modules and rings are studied in terms of max-injective modules with the left derived functors of Hom.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974.
  2. L. Bican, R. El Bashir, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385-390. https://doi.org/10.1017/S0024609301008104
  3. N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470. https://doi.org/10.1080/00927879608825646
  4. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. https://doi.org/10.1007/BF02760849
  5. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.
  6. C. Faith, Algebra II, Grundlehren der Mathematischen Wissenschaften, No. 191. Springer-Verlag, Berlin-New York, 1976.
  7. D. J. Fieldhouse, Pure theories, Math. Ann. 184 (1969), 1-18. https://doi.org/10.1007/BF01350610
  8. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs, 84. American Mathematical Society, Providence, RI, 2001.
  9. L. X. Mao, Min-flat modules and min-coherent rings, Comm. Algebra 35 (2007), no. 2, 635-650. https://doi.org/10.1080/00927870601074889
  10. W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158. Cambridge University Press, Cambridge, 2003.
  11. J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
  12. J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), no. 3, 899-912. https://doi.org/10.1080/00927879808826172
  13. M. Y. Wang, Frobenius Structure in Algebra (Chinese), Science Press, Beijing, 2005.
  14. M. Y. Wang and G. Zhao, On maximal injectivity, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1451-1458. https://doi.org/10.1007/s10114-005-0599-0
  15. J. Z. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.

Cited by

  1. Neat-flat Modules vol.44, pp.1, 2016, https://doi.org/10.1080/00927872.2014.982816
  2. Absolutelys-Pure Modules and Neat-Flat Modules vol.43, pp.2, 2015, https://doi.org/10.1080/00927872.2013.842246