DOI QR코드

DOI QR Code

Anti-diabetic Activities of Kocat-D1 in 3T3-L1 Adipocytes and C57BL/KsJ-db/db Mice

3T3-L1 Adipocyte와 C57BL/KsJ-db/db Mice에서 KOCAT-D1의 항당뇨 활성

  • Yang, Ji-Hee (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Won, Hye-Jin (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Park, Ho-Young (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Hyun-Sun (Institute of Health Science, Korea University) ;
  • Lee, Joong-Ku (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jong-Tak (KOCAT Inc.) ;
  • Lee, Kwang-Won (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2010.01.21
  • Accepted : 2010.02.09
  • Published : 2010.05.31

Abstract

This study investigated anti-diabetic activity of Kocat-D1, which is a currently used traditional medicine for treatment of diabetes in Shandong, China. Insulin sensitizing activity was observed in a cell-based glucose uptake assay using 3T3-L1 adipocytes. The treatment of 0.2 mg/mL of hot water extract of Kocat-D1 with 0.2 nM insulin was associated with a significant increasing in glucose uptake ($165.0{\pm}0.7%$) over the treatment of 0.2 nM insulin. C57BL/KsJ-db/db mice (8 weeks of age) were separated into 3 groups: normal control (control, db/+ mice untreated), diabetic control (DM control, db/db mice untreated), Kocat-D1 (db/db mice treated with Kocat-D1 extract 350 mg/kg/day). After 16 weeks of treatment, body weight and total diet intake of Kocat-D1 group were significantly lower than DM control groups. Blood glucose levels of the Kocat-D1 group ($14.7{\pm}1.4\;mmol/L$) were significantly lower compared to the DM control group ($27.1{\pm}0.2\;mmol/L$). Furthermore, insulin level was significantly increased in the Kocat-D1 group ($0.17{\pm}0.02\;ng/mL$) compared with the DM control group ($0.05{\pm}0.02\;ng/mL$). The glomeruli in kidney was stained using periodic acid-shiff base (PAS) for confirming collagen accumulation. The glomeruli in kidney of Kocat-D1 group had significantly reduced PAS-positive compared with that of DM control.

본 연구는 중국 광동지방에서 민간에서 널리 사용되는 Kocat-D1의 항당뇨 효능을 확인하기 위하여 진행하였다. Kocat-D1의 포도당 흡수능 증가 활성을 지방구세포인 3T3-L1을 이용하여 측정해본 결과, 0.2 nM 인슐린(낮은 인슐린농도)만 투여한 대조군보다 0.2 nM 인슐린과 $100^{\circ}C$ 열수 추출물을 0.2 mg/mL의 농도로 같이 처리하였을 때 대조군보다 포도당 흡수능이 $165.0{\pm}0.7%$로 증가하였다. 8주령의 C57BL/KsJ-db/db mice를 정상대조군(normal control, db/+ mice 비처리군), 당뇨대조군(DM control, db/db mice 비처리군) 및 Kocat-D1군(db/db mice에 Kocat-D1 $100^{\circ}C$ 열수 추출물을 350 mg/kg/day로 투여한 군)으로 나누었다. 16주간의 처리 후 체중과 식이 섭취량은 Kocat-D1군이 당뇨대조군보다 감소하였다. Kocat-D1군의 혈당은 $14.7{\pm}1.4\;mmol/L$였으며 당뇨대조군($27.1{\pm}0.2\;mmol/L$)보다 유의적 수준으로 감소하였다. 인슐린 농도는 Kocat-D1 투여군이 $0.17{\pm}0.02\;ng/mL$로 당뇨대조군의 $0.05{\pm}0.02\;ng/mL$보다 증가하였다. 신장의 glomeruli 부분의 collagen 축적을 확인하기 위하여 periodic acid-shiff base(PAS)로 염색한 결과 Kocat-D1에서 PAS로 염색된 collagen 부분이 감소한 것을 확인하였다.

Keywords

References

  1. IDF. 2008. 7th International Diabetes Federation-Western Pacific Region Congress. Diabetes Res Clin Pract 79: S1-S1.
  2. Zhang W, Xu YC, Guo FJ, Meng Y, Li ML. 2008. Antidiabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin Med J (Engl) 121: 2124-2128.
  3. King H, Aubert RE, Herman WH. 1998. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 21: 1414-1431. https://doi.org/10.2337/diacare.21.9.1414
  4. Han CK, Kim SS, Choi SY, Park JH, Lee BH. 2009. Effects of rice added with mulberry leaves and fruit on blood glucose, body fat and serum lipid levels in rats. J Korean Soc Food Sci Nutr 38: 1336-1341. https://doi.org/10.3746/jkfn.2009.38.10.1336
  5. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247. https://doi.org/10.1093/jn/131.9.2242
  6. Aronne LJ, Nelinson DS, Lillo JL. 2009. Obesity as a disease state: a new paradigm for diagnosis and treatment. Clin Cornerstone 9: 9-25.
  7. Fonseca V. 2006. The role of basal insulin therapy in patients with type 2 diabetes mellitus. Insulin 1: 51-60. https://doi.org/10.1016/S1557-0843(06)80010-2
  8. Lee HT, Lee KH, Park SY, Park HG, Kim RY, Kwon HY, Shin US. 2007. Analysis of oral antidiabetic agents prescribing in the outpatients of community hospital. J Kor Soc Health-Syst Pharm 24: 17-29.
  9. Muller G, Wied S. 1993. The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42: 1852-1867. https://doi.org/10.2337/diabetes.42.12.1852
  10. Toyota T. 1999. Sulfonylurea drug-a new sulfonylurea drug for type 2 diabetes. Nippon Rinsho 57: 695-701.
  11. Yale JF, Valiquett TR, Ghazzi MN, Owens-Grillo JK, Whitcomb RW, Foyt HL. 2001. The effect of a thiazolidinedione drug, troglitazone, on glycemia in patients with type 2 diabetes mellitus poorly controlled with sulfonylurea and metformin. A multicenter, randomized, double-blind, placebo-controlled trial. Ann Intern Med 134: 737-745. https://doi.org/10.7326/0003-4819-134-9_Part_1-200105010-00010
  12. Chang JH, Tseng CF, Wang JY. 2007. Hypoglycemiainduced myocardial infarction: an unusual adverse effect of sulfonylureas. Int J Cardiol 115: 414-416. https://doi.org/10.1016/j.ijcard.2006.01.062
  13. Makom Ndifossap IG, Frigerio F, Casimir M, Tsofack FN, Dongo E, Kamtchouing P, Dimo T, Maechler P. 2010. Sclerocarya birrea (Anacardiaceae) stem-bark extract corrects glycaemia in diabetic rats and acts on beta-cells by enhancing glucose-stimulated insulin secretion. J Endocrinol 205: 79-86. https://doi.org/10.1677/JOE-09-0311
  14. Anand P, Murali YK, Tandon V, Murthy PS, Chandra R. 2009. Insulinotropic effect of aqueous extract of Brassica nigra improves glucose homeostasis in streptozotocin induced diabetic rats. Exp Clin Endocrinol Diabetes 117: 251-256. https://doi.org/10.1055/s-2008-1080917
  15. Chattopadhyay RR. 1999. Possible mechanism of antihyperglycemic effect of Azadirachta indica leaf extract: part V. J Ethnopharmacol 67: 373-376. https://doi.org/10.1016/S0378-8741(99)00094-X
  16. Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. 2005. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull 28: 1431-1437. https://doi.org/10.1248/bpb.28.1431
  17. Won HJ, Lee HS, Kim JT, Hong CH, Koo YC, Lee KW. 2010. The anti-diabetic effects of Kocat-D1 on streptozotocininduced diabetic rats. Korean J Food Sci Technol 42: 204-209.
  18. Roffey BW, Atwal AS, Johns T, Kubow S. 2007. Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells. J Ethnopharmacol 112: 77-84. https://doi.org/10.1016/j.jep.2007.02.003
  19. Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY. 2007. Antiinflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol 557: 76-86. https://doi.org/10.1016/j.ejphar.2006.11.027
  20. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T. 2002. Dual action of isoprenols from herbal medicines on both PPAR gamma and PPAR alpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 514: 315-322. https://doi.org/10.1016/S0014-5793(02)02390-6
  21. Kwon DY, Jang JS, Lee JE, Kim YS, Shin DH, Park S. 2006. The isoflavonoid aglycone-rich fractions of Chungkookjang, fermented unsalted soybeans, enhance insulin signaling and peroxisome proliferator-activated receptor-gamma activity in vitro. Biofactors 26: 245-258. https://doi.org/10.1002/biof.5520260403
  22. Kodama H, Fujita M, Yamaguchi I. 1994. Development of hyperglycaemia and insulin resistance in conscious genetically diabetic (C57BL/KsJ-db/db) mice. Diabetologia 37: 739-744.
  23. Capeau J. 2008. Insulin resistance and steatosis in humans. Diabetes Metab 34: 649-657. https://doi.org/10.1016/S1262-3636(08)74600-7
  24. Kantartzis K, Peter A, Machicao F, Machann J, Wagner S, Konigsrainer I, Konigsrainer A, Schick F, Fritsche A, Haring HU, Stefan N. 2009. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58: 2616-2623. https://doi.org/10.2337/db09-0279
  25. Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, Roncal C, Johnson RJ, Nakagawa T. 2009. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol-Renal 297: F481-F488. https://doi.org/10.1152/ajprenal.00092.2009
  26. Siragy HM, Xue C. 2008. Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats. Exp Physiol 93: 817-824. https://doi.org/10.1113/expphysiol.2008.042085

Cited by

  1. Anti-diabetic Activity of Germinated Ilpum Rough Rice Extract Supplement in Mice vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.339