DOI QR코드

DOI QR Code

Bactericidal Activity of Strongly Acidic Electrolyzed Water on Various Vegetables and Kitchen Apparatus

채소 및 주방기구에 대한 강산성전해수의 살균효과

  • Kim, Yun-Jung (Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University) ;
  • Choi, Kyoo-Duck (Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University) ;
  • Shin, Il-Shik (Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University)
  • 김윤정 (강릉원주대학교 해양생명공학부) ;
  • 최규덕 (강릉원주대학교 해양생명공학부) ;
  • 신일식 (강릉원주대학교 해양생명공학부)
  • Received : 2010.01.25
  • Accepted : 2010.05.03
  • Published : 2010.05.31

Abstract

The properties and bactericidal activities of strongly acidic electrolyzed water (SEW) against food-borne pathogenic bacteria, vegetables and kitchen apparatuses were investigated. The available chlorine concentration, pH and oxidation reduction potential (ORP) of SEW were $35{\pm}1.2\;ppm$, $2.3{\pm}0.2$, and $1,140{\pm}20.4\;mV$, respectively. Five strains of food-borne bacteria with initial cell number of 7.00 log CFU/mL were not detected except Bacillus cereus after treatment with SEW for 60 sec. The numbers of Bacillus cereus were reduced to 2.08{\pm}1.00 log CFU/mL at the same condition. In vegetables, SEW treatment after washing strongly in alkalic electrolyzed water (AEW) showed better bactericidal effects than SEW only. The viable cell on stainless steel bowl ($3.86{\pm}2.49\;\log\;CFU/100\;cm^2$) and cup for water ($2.40{\pm}1.80\;\log\;CFU/100\;cm^2$) were not detected by SEW treatment (35 ppm of available chlorine concentration) for 30 sec, but survival of more than 1.00 log CFU/$100\;cm^2$ of viable cell was shown by washing of sodium hypochlorite solution at the same condition. On the other hand, the coliform group bacteria ($5.08{\pm}4.00\;CFU/100\;cm^2$) were detected on rubber globe only, and more than 2.00 log CFU/$100\;cm^2$ of viable cell and coliform group bacteria on it survived, though it was washed with flowing SEW for 30 sec.

격막식으로 생산한 강산성전해수(SEW)의 유효염소농도는 $35{\pm}1.2\;ppm$, pH는 $2.3{\pm}0.2$, ORP는 $1,140{\pm}20.4\;mV$이었으며, AEW의 유효염소농도는 $0.1{\pm}0.01\;ppm$, pH는 $11.6{\pm}1.1$, ORP는 $-900{\pm}18.2\;mV$이었다. 6종의 병원성세균(초기균수 $1.0{\times}10^7\;CFU/mL$)에 대한 SEW의 살균효과를 조사한 결과, 대조구로 사용한 유효염소농도 35 ppm의 차아염소산 나트륨 용액의 경우, 60초간 처리하여도 2~4 log 정도의 균밖에 감소하지 않았으나 SEW는 60초간 처리로 포자를 형성하는 B. cereus를 제외한 나머지 5종의 병원성세균을 모두 살균하였으며, B. cereus의 경우 완전하게 살균하지는 못하였지만 약 4 log CFU/g 이상이 감소하여, 같은 유효염소농도라도 SEW가 차아염소산나트륨 용액보다 살균력이 뛰어나다는 것을 알 수 있었다. 채소의 경우, AEW로 세척 후 SEW 처리하였을 때가 SEW 단독처리보다 살균효과가 더 좋았다. 한편 콩나물, 무순의 경우 AEW로 30초간 세척 후 SEW로 30초간 처리하여도 균수는 각각 $2.50{\pm}0.13$, $2.19{\pm}0.13$만 감소하였고 4 log CFU/g 이상의 균이 잔존하고 있었다. 식기와 컵은 차아염소산나트륨 용액(유효염소농도 35 ppm) 30초간 처리로는 1.19~1.28 log CFU/$100\;cm^2$ 정도만 감소하였지만, SEW 30초간 처리로 균이 검출되지 않았다. 고무장갑의 경우 유일하게 대장균군이 검출되었으며 SEW 30초간 처리로 고무장갑 표면의 일반세균과 대장균군은 대조군인 수도수에 비하여 약 2 log CFU/$100\;cm^2$ 이상 감소하였으나 완전한 살균은 되지 않았다.

Keywords

References

  1. Korea Food & Drug Administration. 2009. Information of food poison. http://e-stat.kfda.go.kr
  2. Bott TR. 1991. Ozone as a disinfecting of raw produce. Dairy Food Environ Sanitation 12: 6-9.
  3. Cena A. 1998. Ozone: Keep it fresh for food processing. Water Conditioning Purification Sept: 112-115.
  4. Graham DM. 1997. Use of ozone for food processing. Food Technol 51: 72-73.
  5. Rice RG, Arquhar FW, Bolyky LJ. 1982. Review of the application of ozone for increasing storage time for perishable foods. Ozone Sic Eng 4: 147-163.
  6. Sapers GM. 1998. New technologies for safer producechemical-based treatments and decontamination by washing. In Proc. of Fresh Fruits and Vegetables. Food Safety and Technology, Chicago, USA. May p 12-14.
  7. Ong KC, Cash JN, Zabik MJ, Sidding M. 1995. Chlorine and ozone as postharvest wash in the removal of pesticides from apples. In Book of Abstracts. Ann. Mtg., Inst. of Food Technologists. p 28.
  8. Yamanaka S. 1995. Technology using electrolyzed oxidizing water sanitation. Food Processing Technology 15: 103-112.
  9. Suzuki T. 1996. Bactericidal effect of electrolyzed water. Bioindustry 13: 15-27.
  10. Hotta K, Suzuki T. 1999. Electrolyzed water: Formation principle, physicochemical property and function. Bioscience & Industry 57: 22-26.
  11. Sharma RR, Demirci A. 2003. Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water. Int J Food Microbiol 86: 231-237. https://doi.org/10.1016/S0168-1605(02)00549-4
  12. Park H, Hung YC, Chung DH. 2004. Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91: 13-18. https://doi.org/10.1016/S0168-1605(03)00334-9
  13. Suzuki T. 1998. Electrolyzed water use and safety in the field of food. Monthly Food Chemical May: 35-42.
  14. Kim C, Hung YC, Brackett RE. 2000. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61: 199-207. https://doi.org/10.1016/S0168-1605(00)00405-0
  15. Suzuki T. 1999. Strong acid electrolyzed solution: application and problems. J Antibac Antifung Agents 27: 487-492.
  16. Chyer K, Yen-Con H, Brackett RE. 2000. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61: 199-207. https://doi.org/10.1016/S0168-1605(00)00405-0
  17. Al-Haq MI, Seo Y, Oshita S, Kawagoe Y. 2002. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res Inter 35: 657-664. https://doi.org/10.1016/S0963-9969(01)00169-7
  18. Suzuki T, Itakura J, Watanabe M, Ohta M, Sato Y, Yamaya Y. 2002. Inactivation of staphylococcal enterotoxin-A with an electrolyzed anodic solution. J Agric Food Chem 50: 230-234. https://doi.org/10.1021/jf010828k
  19. Suzuki T, Noro T, Kwamura Y, Fukunaga K, Watanabe M, Ohta M, Sugiue H, Sato Y, Kohno M, Hotta K. 2002. Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J Agric Food Chem 50: 633-641. https://doi.org/10.1021/jf0108361
  20. 鈴木鐵也. 1996. 電解處理水による食品衛生管理:食品殺菌 への利用その可能性と課題. 食品と開發 31: 9-13.
  21. Suzuki T. 1997. Challenges and prospects of acidic electrolyzed water use in the food industry. New Food Industry 39: 61-66.
  22. 久保田昌治. 1995. 强酸化水の 開發と利用. 食品と開發 30: 9-13.
  23. Miyashita K, Yasuda M, Ota T, Suzuki T. 1999. Antioxidative activity of cathodic solution produced by the electrolysis of a dilute NaCl solution. Biosci Biotechnol Biochem 63: 421-423.
  24. 阿知波信夫. 2004. 强酸性電解水および强アルカリ性電解水 の利用と普及. 防菌防黴誌 32: 41-47.
  25. Kasai H, Ishikawa A, Hori Y, Watanabe K, Yoshimizu M. 2000. Disinfectant effects of electrolyzed salt water on fish pathogenic bacteria and viruses. Nippon Suisan Gakkaishi 66: 1020-1025. https://doi.org/10.2331/suisan.66.1020
  26. Jorquera MA, Valencia G, Eguchi M, Katayose M, Riquelme C. 2002. Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment. Aquaculture 207: 213-334. https://doi.org/10.1016/S0044-8486(01)00766-9
  27. Korea Food & Drug Administration. 2009. 식품첨가물의 기준 및 규격 고시 (고시 제 2009-168호). 3. 기구 등의 살균소독제. 6 차아염소산수. http://www.kfda.go.kr/index.kfda?mid=92&page
  28. APHA. 1970. Recommended procedures for the bacteriological examination of sea water and shellfish. 4th ed. American Public Health Association, Inc., Washington, DC, USA. p 10-105.
  29. Hotta K. 2001. The use of acidic electrolyzed water for sanitary or hygienic measure in food and medical field. Food Processing & Ingredients 36: 10-12.

Cited by

  1. Antioxidant Activity of Hwangki and Beni-Koji Extracts and Mixture vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.001
  2. Prevalence and Toxin Characteristics of Microorganism on Hand Towels Using for Children in Child Care Center vol.28, pp.2, 2013, https://doi.org/10.13103/JFHS.2013.28.2.138
  3. Evaluation and Reduction of Microbiological Hazard of Spoon and Spoon Case Carried by Nursery School Children vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.116
  4. Improvement of HACCP Verification Checklist in School Foodservices - A Case Study on Cooked Squid with Seasoned Fresh Vegetable - vol.18, pp.3, 2012, https://doi.org/10.14373/JKDA.2012.18.3.222
  5. Efficacy of Electrolyzed Water and Aqueous Chlorine Dioxide for Reducing Pathogenic Microorganism on Chinese Cabbage vol.44, pp.2, 2012, https://doi.org/10.9721/KJFST.2012.44.2.240