DOI QR코드

DOI QR Code

Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis

유한요소 해석을 통한 수소확산에 미치는 영향 평가

  • Received : 2009.12.04
  • Accepted : 2010.03.24
  • Published : 2010.06.01

Abstract

The coupled model with hydrogen transport and elasto-plasticity behavior was introduced. In this paper, the effective factor of the hydrogen diffusion equation has been described. To assess the effective factor, finite element (FE) analyses including hydrogen transport and mechanical loading for boundary layer specimens with low-strength steel properties are carried out. The results of the FE analyses are compared with those from previous studies conducted by Taha and Sofronis (2001).

수소 확산과 탄-소성 거동이 결합된 모델은 이미 제시되어 있다. 본 논문에서는 수소확산에 미치는 인자들과 그 영향에 대해 연구하였다. 각 인자들의 영향을 비교하기 위해 저탄소강 재료의 균열이 있는 무한 평판 모델에 대해 수소확산과 기계적 하중이 연계된 유한요소 해석을 수행하였다. 유한요소 해석 결과는 Taha와 Sofrinis의 연구(2001) 결과와 비교하여 검증하였다.

Keywords

References

  1. Birnbaum, H. K. and Sofronis, P., 1994, “Hydrogen-Enhanced Localized Plasticity – A Mechanism for Hydrogen Related Fracture,” Materials Science and Engineering A, Vol. 176, pp. 191-202. https://doi.org/10.1016/0921-5093(94)90975-X
  2. Sofronis, P. and McMeeking, R. M., 1989, “Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip,” Journal of the Mechanics and Physics of Solids, Vol. 37, No. 3, pp. 317-350. https://doi.org/10.1016/0022-5096(89)90002-1
  3. Lufrano, J. and Sofronis, P., 1998, “Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks – Competition Between Plastic Strain and Hydrostatic Stress,” Acta Materialia, Vol. 46, No. 5, pp. 1519-1526. https://doi.org/10.1016/S1359-6454(97)00364-9
  4. Taha, A. and Sofronis, P., 2001, “A Micromechanics Approach to the Study of Hydrogen Transport and Embrittlement,” Engineering Fracture Mechanics, Vol. 68, pp. 803-837. https://doi.org/10.1016/S0013-7944(00)00126-0
  5. Krom, A. H. M., Koers, R. W. J. and Bakker, A., 1999, “Hydrogen Transport Near a Blunting Crack Tip,” Journal of the Mechanics and Physics of Solids, Vol. 47, pp. 971-992. https://doi.org/10.1016/S0022-5096(98)00064-7
  6. Krom, A. H. M., Maier, H. J., Koers, R. W. J. and Bakker, A., 1999, “The Effect of Strain Rate on Hydrogen Distribution in Round Tensile Specimens,” Material Science and Engineering A, Vol. 271, pp. 22-30. https://doi.org/10.1016/S0921-5093(99)00276-2
  7. Westlake, D.G., 1969, A Generalized Model for Hydrogen Embrittlement, Trans ASM, 62:1000-6
  8. Birnbaum, H.K., Grossbeck, M.L. and Amano, M., 1976, Hydride Precipitation in Nb and Some Properties of NbH, J Less Comm Met, 49:357-70 https://doi.org/10.1016/0022-5088(76)90048-5
  9. Gahr, S., Grossbeck, M.L. and Birnbaum, H.K., 1977, Hydrogen Embrittlement of Nb I – Macroscopic Behavior at Low Temperatures, Acta Metall, 25:125-34 https://doi.org/10.1016/0001-6160(77)90116-X
  10. Grossbeck, M.L. and Birnbaum, H.K., 1977, Low Temperature Hydrogen Embrittlement of Niobium II –Microscopic Observations, Acta Metall, 25:135-47 https://doi.org/10.1016/0001-6160(77)90117-1
  11. Troiano, A.R., 1960, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metal, Trans ASM, 52:54-80
  12. Johnson, H.H., Morlet, J.G. and Troiano, A.R., 1958, Hydrogen Crack Initiation and Delayed Failure in Steel, Trans Metall Soc AIME, 212:528-36
  13. Oriani, R.A. and Josephic, P.H., Equilibrium Aspects of Hydrogen-Induced Cracking of Steels, Acta Metall, 22:1065-74
  14. Lessar, J.F. and Gerberich, W.W., Grain Size Effect in Hydrogen-Assisted Cracking, Metall Trans, 7A:953-60
  15. Kim, Y., Chao, Y. J., Morgan, M. J. and Lam, P. S., “Comparison of Decoupled and Coupled Analyses for Hydrogen Transport in Fracture Specimens,” 2007 ASME Conference on Pressure Vessels and Piping, July 22-26, 2007, San Antonio, Texas.
  16. ABAQUS Version 6.7, 2007, “User’s Manual,” Hibbitt, Karlsson and Sorensen, Inc, RI.
  17. Oriani, R. A., 1970 “The Diffusion and Trapping of Hydrogen in Steel,” Acta Metallurgica et Materialia, Vol. 18, pp. 147-157. https://doi.org/10.1016/0001-6160(70)90078-7
  18. Oh Chang-Sik and Kim Yun-Jae, 2009, “Coupled Analysis of Hydrogen Transport Within ABAQUS,” Trans. of the KSME (A), Vol. 33, No. 6, pp. 600-606. https://doi.org/10.3795/KSME-A.2009.33.6.600