Protective Effect of Dodamtanggami-bang on Endoplasmic Reticulum Stress in C6 Glial Cells

도담탕가미방(導痰湯加味方)이 tunicamycin에 의한 소포체 스트레스성 C6 glial 세포사멸에 미치는 영향

  • Kim, Bong-Sang (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Moon, Byung-Soon (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University)
  • 김봉상 (원광대학교 한의과대학 심계내과학교실) ;
  • 문병순 (원광대학교 한의과대학 심계내과학교실)
  • Received : 2010.11.03
  • Accepted : 2010.12.08
  • Published : 2010.12.25

Abstract

This study was designed to evaluate the protective effects of Dodamtanggami-bang (DDTG) on tunicamycin induced cell death by ER stress in C6 glial cells. Cell viability was measured by MTT assay and LDH release. Apoptosis was determined by caspase activity and flow cytometry in C6 glial cells. Expression of ER stress mediators including, GRP78 and CHOP proteins were measured by Western blot analysis. Tunicamycin induced the apoptosis of C6 glial cells, which was characterized as nucleic acid and caspase-3 activation, PARP cleavage, and sub-G0/G1 fraction of cell cycle increase. However, pretreatment with DDTG protected C6 glial cells from tunicamycin. Treatment with tunicamycin resulted in the increased the expression of GRP78 and CHOP protein and produced ROS generation. However, pretreatment with DDTG inhibited the ER stress pathway, including increase of the expression of GRP78, CHOP proteins in C6 glial cells treated with tunicamycin. Taken together, these data suggest that DDTG is able to protect C6 glial cells from tunicamycin with marked inhibition of ER stress.

References

  1. Peter, L. Ischemic Cell Death in Brain Neurons. Physiol. Review. 70: 1499, 1999.
  2. 고재영 外. 신경계 질환에서의 아폽토시스 유전. 2: 147-165, 1998.
  3. Kirino, T., Tamura, A., Sano, K. Selective vulnerability of the hippocampus to ischemia reversible and irreverisible types of ischemic cell damage. Progress in Brain Res. 63: 39-58, 1985. https://doi.org/10.1016/S0079-6123(08)61974-3
  4. Fernandes-Alnemri, T., Armstrong, R.C., Krebs, J., Srinivasula, S.M., Wang, L., Bullrich, F., Fritz, L.C., Trapani, J.A., Tomaselli, K.J., Litwack, G., Alnemri, E.S. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA. 93(15):7464-7469, 1996. https://doi.org/10.1073/pnas.93.15.7464
  5. Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E., Dixit, V.M. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell. 85(6):817-827, 1996. https://doi.org/10.1016/S0092-8674(00)81266-0
  6. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91(4):479-489, 1997. https://doi.org/10.1016/S0092-8674(00)80434-1
  7. Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 90(3):405-413, 1997. https://doi.org/10.1016/S0092-8674(00)80501-2
  8. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 403(6765):98-103, 2000. https://doi.org/10.1038/47513
  9. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem. 277(37):34287-34294, 2002. https://doi.org/10.1074/jbc.M204973200
  10. Airavaara, M., Shen, H., Kuo, C.C., Peränen, J., Saarma, M., Hoffer, B., Wang, Y. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J Comp Neurol. 515(1):116-124, 2009. https://doi.org/10.1002/cne.22039
  11. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 403(6765):98-103, 2000. https://doi.org/10.1038/47513
  12. Chigurupati, S., Wei, Z., Belal, C., Vandermey, M., Kyriazis, G., Arumugam, T., Chan, S.L. The homocysteine-inducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of C/EBP homologous protein in a neurotoxin model of Parkinson's disease. J Biol Chem. 2009 May 15. [Epub ahead of print]
  13. Zou, C.G., Cao, X.Z., Zhao, Y.S., Gao, S.Y., Li, S.D., Liu, X.Y., Zhang, Y., Zhang, K.Q. The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I. Endocrinology. 150(1):277-285, 2009. https://doi.org/10.1210/en.2008-0794
  14. 嚴用和. 嚴氏濟生方, 北京, 人民衛生出版社, p 79, 1980.
  15. 李梴. 醫學入門, 서울, 한성사, p 525, 1983.
  16. 許浚. 東醫寶鑑, 서울, 법인문화사, p 277, 965, 1999.
  17. 김연두. 導痰湯이 家兎의 高脂血症및 血栓症에 미치는 影響. 원광한의학, 4(1):85-128, 1994.
  18. 김영균. 導痰湯이 高脂血症實驗動物에 미치는 效果, 원광대학교대학원, 1988.
  19. 김경훈. 도담탕이 고지혈증 흰주의 뇌허혈 손상에 미치는 영향, 경원대학교 대학원, 2008.
  20. 정현우, 김희성. 導痰湯이 白鼠의 腦血流改善및 作用機轉에 미치는 效果, 대한동의병리학회지 14(2):233-244, 2000.
  21. 최정화, 정현우. 導痰湯및 그 加味方이 局所腦血流量및 血壓에 미치는 影響, 대한동의병리학회지 14(1):99-106, 2000.
  22. 조현경. 導痰湯이 腦損傷및 高血壓에 미치는 影響, 대한한방내과학회지 2(4):503-512, 2001.
  23. 황홍일. 導痰湯이 Amyloid-$\beta$ 펩티드에 의한 혈관내피세포 손상에 미치는 영향. 동의대학교대학원, 2003.
  24. 이계승. Neuro 2A 세포의 산화적 손상에 대한 導痰湯加味方의 방어효과. 원광대학교대학원, 2004.
  25. 이유승. 導痰湯이 C2C12세포주로부터 myostatin발현에 의한 심근에 미치는 영향, 대한한방내과학회지 29(1):243-257, 2008.
  26. 賈文魁. 古今醫家診治中風經驗及發揮, 北京, 人民軍醫出版社,p 90, 1999.
  27. 朱震亨. 丹溪醫集, 北京, 人民衛生出版社, p 200, 253, 1993.
  28. 孫一奎. 赤水玄珠全集, 北京, 人民衛生出版社, p 48, 1986.
  29. 丁元慶. 盧尚岭調气爲主治療急性中風經驗, 山東中医藥大學學報, 24(1):43-44, 2000.
  30. 陳 言. 陳無擇三因方(卷2), 臺北, 臺聯國風出版社, p 13, 1978.
  31. 신재용. 方藥合編解說, 서울, 成輔社, pp 207-208, 2000.
  32. 王 昻. 醫方集解, 서울, 大星文化社, pp 241-243, 1984.
  33. 이재용. 烏藥順氣散이 腦損傷및 高血壓에 미치는 影響, 대전대학교대학원, 2001.
  34. 제정진. Protective effects of Oyaksunki-san(Wuyaoshunqusan) against $H_{2}$ $O_{2}$ -induced apoptosis in hippocampal cell line HiB5, 경희대학교대학원, 2002.
  35. 차용석. Neuro 2A 세포의 산화적 손상에 대한 烏藥順氣散의 방어효과, 원광대학교대학원, 2004.
  36. Guo, R., Ma, H., Gao, F., Zhong, L., Ren, J. Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol. 2009 Apr 1. [Epub ahead of print]
  37. Rao, R.V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P.C., Ellerby, L.M., Ellerby, H.M., Bredesen, D.E. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514(2-3):122-228, 2002. https://doi.org/10.1016/S0014-5793(02)02289-5
  38. Schroder, M., Kaufman, R.J. The mammalian unfolded protein response. Annu Rev Biochem. 74: 739-789, 2005. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  39. Harding, H.P., Calfon, M., Urano, F., Novoa, I., Ron, D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 18: 575-599, 2002. https://doi.org/10.1146/annurev.cellbio.18.011402.160624
  40. Araki, E., Oyadomari, S., Mori, M. Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp Biol Med. 228: 1213-1217, 2003. https://doi.org/10.1177/153537020322801018