Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model

강우-유출 모형의 불확실성을 고려한 돌발홍수기준

  • 이건행 (인하대학교 토목공학과) ;
  • 김형수 (인하대학교 사회기반시스템 공학부) ;
  • 김수전 (인하대학교 토목공학과) ;
  • 김병식 (한국건설기술연구원 수자원연구실)
  • Received : 2010.08.10
  • Accepted : 2010.09.05
  • Published : 2010.12.31

Abstract

The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

돌발홍수는 짧은 지속기간, 급격한 경사와 불투수층에 대해 강한 강우로 인하여 피해를 유발하는 홍수를 말한다. 돌발홍수는 강우가 돌발홍수기준(Flash Flood Guidance)을 초과하는 경우에 발생하게 되며, 따라서 돌발홍수기준을 정확히 산정하는 것이 돌발홍수예보의 정확성에 크게 기여한다. 즉, 강우-유출관계가 갖고 있는 불확실성(uncertainty)을 최소화 할수록 돌발홍수기준을 정확하게 산정할 수 있으며, 강우-유출 모형은 각각 고유의 매개변수와 특성을 갖고 있으므로 어떠한 강우-유출 모형을 사용하여 강우-유출관계를 도출하느냐에 따라 불확실성의 정도가 크게 좌우된다. 본 연구에서는 4개의 강우-유출모형(HEC-HMS 모형, 저류함수모형, SSARR 모형, TANK 모형)의 모의값에 Monte Carlo 모의 방법을 적용하여 95%신뢰수준에 대한 신뢰한계를 추정하여 제시하였다.

Keywords

References

  1. 김범준 (2007). "미호천 유역의 홍수모의예측을 위한 저류함수모형과 SSARR모형의 비교 연구", 인하대학교, 석사학위논문
  2. 김양수 (2006). "홍수예보현황", 한국수자원학회지, Vol. 39, No. 7
  3. 건설교통부 (2000), "지역적 설계 강우의 시간적 분포"
  4. 건설교통부 (2005). "강우레이더에 의한 돌발홍수 예보시스템 개발 1차년도"
  5. AMS(American Meteorological Society) (2000). "Prediction and mitigation of flash flood", Bulletin of the American Meteorological Society, Vol. 81, No. 6, pp. 1338-1340 https://doi.org/10.1175/1520-0477(2000)081<1338:PSPAMO>2.3.CO;2
  6. Boyle, D.B., Gupta, H.V., Sorooshian, S., Koren, V., Zhang, Z., Smith, M., (2001). "Toward improved streamflow forecasts, value of semi-distributed modeling". Water Resources Research, Vol. 37, No. 11, pp. 2749-2759 https://doi.org/10.1029/2000WR000207
  7. Carpenter, T.M., Georgakakos, K.P., Sperfslage, J.A., (2001). "On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use". Journal of Hydrology, Vol. 254, pp. 169-193
  8. Carpenter, T.M., Georgakakos, K.P. (2004). "Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model", Journal of Hydrology, Vol. 298, pp. 202-221 https://doi.org/10.1016/j.jhydrol.2004.03.036
  9. Cooke, W.E. (1906), "Forecast and verification in Western Australia", Monthly Weather Review, Vol. 34, No. 1, pp. 23-24 https://doi.org/10.1175/1520-0493(1906)34<23:FAVIWA>2.0.CO;2
  10. Ferraris, L, R.Rudari, F. Siccardi (2002), "The uncertainty in the prediction of flash floods in the northern Mediterranean environment", Journal of hydrometeorology, Vol. 3, No. 6, pp. 714-727 https://doi.org/10.1175/1525-7541(2002)003<0714:TUITPO>2.0.CO;2
  11. Finnerty, B.D., Smith, M.B., Seo, D.-J., Koren, V., Moglen, G.E., (1997). "Space-time sensitivity of the Sacramento model to radar-gage precipitation inputs". Journal of Hydrology, Vol. 203, pp. 21-38 https://doi.org/10.1016/S0022-1694(97)00083-8
  12. Georgakakos, K.P. and M.D. Hudlow (1984), "Quantitative precipitation forecasts techniques for use in hydrologic forecasting", Bulletin of the American Meteorological Society, Vol. 65, No. 11, pp. 1196-1200
  13. Georgakakos, K.P.(1986). "A generalized stochastic hydrometeorological model for flood and flash-flood forecasting, 1 Formulation", Water Resource Research, Vol. 22, No. 13, pp. 2083-2095 https://doi.org/10.1029/WR022i013p02083
  14. Georgakakos, K.P. (1992), "Advances in Forecasting Flash Floods, Proceedings of the 1992 National Science Foundation", U.S. National Science Council, Taiwan, Joint Seminar on Prediction and Damage Mitigation of Meteorologically Induced Natural Disaster, May 21-24, 1992, National Taiwan University, Taipei, Taiwan, pp. 280-291
  15. Krzysztofowicz, R. (1999), "Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resources Research, Vol. 35, No. 9, pp. 2739-2750 https://doi.org/10.1029/1999WR900099
  16. Michaud, J., Sorooshian, S., (1994). "Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed". Water Resources Research, Vol. 30, No. 3, pp. 593-605 https://doi.org/10.1029/93WR03218
  17. Refsgaard, J.C., (1997). "Parameterization, calibration, and validation of distributed hydrological models", Journal of Hydrology, Vol. 198, pp. 69-97 https://doi.org/10.1016/S0022-1694(96)03329-X
  18. Sweeny, T.L.(1992). "Modernized area flash flood guidance", NOAA Technical Report NWS HYDRO 44, Hydrologic Research Laboratory, National Weather Service
  19. Wagener, T., Gupta, H., Yatheendradas, S., Goodrich, D., Unkrich, C., Schaffner, M.(2007). "Understanding sources of uncertainty in flash flood forecasting for semi-arid regions", Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management (Proceedings of Symposium HS2004 at IUGG2007, Perugia, July 2007). IAHS Publ. 313
  20. World Meteorological Organization(1974). "International Glossary of hydrology", UNESCO panel of terminology.