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VISCOSITY APPROXIMATIONS FOR NONEXPANSIVE
NONSELF-MAPPINGS IN BANACH SPACES

Jong Soo Jung

Abstract. Strong convergence theorem of the explicit viscosity itera-

tive scheme involving the sunny nonexpansive retraction for nonexpansive

nonself-mappings is established in a reflexive and strictly convex Banach
spaces having a weakly sequentially continuous duality mapping. The

main result improves the corresponding result of [19] to the more general
class of mappings together with certain different control conditions.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset
of E. Recall that a mapping f : C → C is a contraction on C if there exists a
constant k ∈ (0, 1) such that ‖f(x)− f(y)‖ ≤ k‖x− y‖, x, y ∈ C. We use ΣC
to denote the collection of mappings f verifying the above inequality. That is,
ΣC = {f : C → C | f is a contraction with constant k}. Let T : C → C be
a nonexpansive mapping (recall that a mapping T : C → C is nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C) and F (T ) denote the set of fixed points of
T ; that is, F (T ) = {x ∈ C : x = Tx}.

In 1967, Halpern [5] firstly introduced the following explicit iterative scheme
(1.1) in Hilbert space,

xn+1 = λnu+ (1− λn)xn. (1.1)

He pointed out that the control conditions

(C1) limn→∞ λn = 0,
(C2)

∑∞
n=0 λn =∞ or, equivalently,

∏∞
n=0(1− λn) = 0

are necessary for the convergence of the iteration scheme (1.1) to a fixed point
T . In 1992, Wittmann [20], still in Hilbert space, obtained a strong convergence
result for the iteration scheme (1.1) under the control conditions (C1), (C2)
and
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(C3)
∑∞
n=0 |λn+1 − λn| <∞.

Shioji and Takahashi [18] extended Wittmann’s results to a reflexive Banach
space having a uniformly Gâteaux differentiable norm such that each nonempty
closed convex and bounded subset has the fixed point property for nonexpansive
mappings. For other control conditions, we refer Cho et al. [2], Lions [9] and
Reich [17].

On the other hand, the viscosity approximation method of selecting a par-
ticular fixed point of a given nonexpansive mapping was proposed by Moudafi
[15]. In 2004, in order to extend Theorem 2.2 of Moudafi [15] to a Banach space
setting, Xu [22] considered the the following explicit viscosity iterative scheme
in a uniformly smooth Banach space: for T : C → C nonexpansive mapping,
f ∈ ΣC and λn ∈ (0, 1),

xn+1 = λnf(xn) + (1− λn)Txn, n ≥ 0, (1.2)

and under control conditions (C1), (C2) and (C3) or

(C4) limn→∞
λn

λn+1
= 1,

on {λn}, he studied the strong convergence of xn defined by (1.2) to a fixed
point of T which is the unique solution of certain variational inequality.

In 2006, using the sunny nonexpansive retraction Q from E onto C and
T : C → E nonexpansive nonself-mapping satisfying the weak inwardness
condition, Song and Chen [19] considered the explicit viscosity iterative scheme

xn+1 = Q(λnf(xn) + (1− λn)Txn), n ≥ 0,

and improved the results of Xu [22] to the case of nonself-mapping in a reflexive
Banach space having a weakly sequentially continuous duality mapping under
the control conditions (C1), (C2) and (C3) on {λn}.

Very recently, under the control conditions (C1), (C2) and (C3) on {λn},
Matsushita and Takahashi [12] studied the following explicit iterative scheme
in a uniformly convex Banach space having a uniformly Gâteaux differentiable
norm: for T : C → E nonexpansive mapping, u ∈ C, x0 ∈ C, and the sunny
nonexpansive retraction Q from E onto C

xn+1 = Q(λnu+ (1− λn)Txn), n ≥ 0.

In this paper, motivated by above-mentioned results, we consider the follow-
ing explicit viscosity scheme: for T : C → E nonexpansive mapping, f ∈ ΣC ,
λn ∈ (0, 1), x0 ∈ C, and the sunny nonexpansive retraction Q from E onto C,

xn+1 = Q(λnf(xn) + (1− λn)Txn), n ≥ 0. (1.3)

Under the control conditions (C1), (C2) on {λn} and the weak asymptotic
regularity on {xn} instead of the condition (C3) on {λn}, we establish the
strong convergence of {xn} generated by (1.3) in a reflexive and strictly Banach
space having a weakly sequentially continuous duality mapping. The main
result improves the corresponding result in Song and Chen [19] to the class
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of mappings which need’t satisfy the weak inwardness condition together with
certain different control conditions. Our result also extends the corresponding
results of [15, 22] to the case of non-self mappings.

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The
value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉.

A Banach space E is said to be strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1. It is also said to be uniformly convex if limn→∞ ‖xn −
yn‖ = 0 for any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1.
The norm of E is said to be Gâteaux differentiable if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. Such an E is
called a smooth Banach space.

By a gauge function we mean a continuous strictly increasing function ϕ
defined on R+ := [0,∞) such that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The
mapping Jϕ : E → 2E

∗
defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)}, for all x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality
mapping with gauge function ϕ(t) = t denoted by J , is referred to as the
normalized duality mapping. The following property of duality mapping is
well-known:

Jϕ(λx) = sign λ

(
ϕ(|λ| · ‖x‖)
‖x‖

)
J(x) for all x ∈ E \ {0}, λ ∈ R, (2.1)

where R is the set of all real numbers; in particular, J(−x) = −J(x) for all
x ∈ E ([3]).

Following Browder [1], we say that a Banach space E has a weakly sequential
continuous duality mapping if there exists a gauge function ϕ such that the
duality mapping Jϕ is single-valued and continuous from the weak topology to
the weak∗ topology, that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn) ∗⇀ Jϕ(x).
For example, every lp space (1 < p <∞) has a weakly sequentially continuous
duality mapping with gauge function ϕ(t) = tp−1. Set

Φ(t) =
∫ t

0

ϕ(τ)dτ, for all t ∈ R+.

Then it is known [1] that Jϕ(x) is the subdifferential of the convex functional
Φ(‖·‖) at x. Thus it is easy to see that the normalized duality mapping J(x) can
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also be defined as the subdifferential of the convex functional Φ(‖x‖) = ‖x‖2/2,
that is, for all x ∈ E
J(x) = ∂Φ(‖x‖) = {f ∈ E∗ : Φ(‖y‖)− Φ(‖x‖) ≥ 〈y − x, f〉 for all y ∈ E}.

It is well-known that if E is smooth, then the normalized duality mapping J is
single-valued and norm to weak∗ continuous ([3]).

We need the following well-known lemma for the proof of our main result.

Lemma 2.1. Let E be a real Banach space and ϕ a continuous strictly in-
creasing function on R+ such that ϕ(0) = 0 and limr→∞ ϕ(r) =∞. Define

Φ(t) =
∫ t

0

ϕ(τ)dτ, for all t ∈ R+.

Then the following inequality holds

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x+ y)〉, for all x, y ∈ E,
where jϕ(x+ y) ∈ Jϕ(x+ y). In particular, if E is smooth, then one has

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉, for all x, y ∈ E.

Let µ be a mean on positive integersN , that is, a continuous linear functional
on `∞ satisfying ‖µ‖ = 1 = µ(1). Then we know that µ is a mean on N if and
only if

inf{an : n ∈ N} ≤ µ(a) ≤ sup{an : n ∈ N}
for every a = (a1, a2, ...) ∈ `∞. According to time and circumstances, we use
µn(an) instead of µ(a). A mean µ on N is called a Banach limit if

µn(an) = µn(an+1)

for every a = (a1, a2, ...) ∈ `∞. Using the Hahn-Banach theorem, we can
prove the existence of a Banach limit. If µ is a Banach limit, the following are
well-known:

(i) for all n ≥ 1, an ≤ cn implies µ(an) ≤ µ(cn),
(ii) µ(an+N ) = µ(an) for any fixed positive integer N ,
(iii) lim infn→∞ an ≤ µn(an) ≤ lim supn→∞ an for all (a0, a1, · · · ) ∈ l∞.

The following lemma was given in [18, Proposition 2].

Lemma 2.2. Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy the
condition µn(an) ≤ a for all Banach limit µ. If lim supn→∞(an+1 − an) ≤ 0,
then lim supn→∞ an ≤ a.

Let D be a subset of C. Then a mapping Q : C → D is said to be a retraction
from C onto D if Qx = x for all x ∈ D. A retraction Q is said to be sunny
if Q(Qx + t(x − Qx)) = Qx for all t ≥ 0 and x + t(x − Qx) ∈ C. A sunny
nonexpansive retraction is a sunny retraction which is also nonexpansive. A
subset D of C is said to be a sunny nonexpansive retract of C if there exists a
sunny nonexpansive retraction of C onto D. Sunny nonexpansive retractions
are characterized as follows ([4, p. 48]): If E is a smooth Banach space, then
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Q : C → D is a sunny nonexpansive retraction if and only if the following
condition holds:

〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.2)

(Note that this fact still holds by (2.1) if the normalized duality mapping J is
replaced by a general duality mapping Jϕ with gauge function ϕ.)

Let C be a nonempty closed convex subset of a Banach space E. For x ∈ C,
let

IC(x) = {y ∈ E : y = x+ λ(z − x), z ∈ C and λ ≥ 0}.

IC(x) is called the inward set of x ∈ C with respect to C (for example, see
[4]). IC(x) is a convex set containing C. A mapping T : C → E is said to
be satisfying the inward condition if Tx ∈ IC(x) for all x ∈ C, and T is also
said to be satisfying the weakly inward condition if for each x ∈ C, Tx ∈ IC(x)
(IC(x) is the closure of IC(x)). Every self-mapping is trivially weakly inward.

The following lemmas were given in [12].

Lemma 2.3. Let C be a closed convex subset of a smooth Banach space E
and T be a mapping from C into E. Suppose that C is a sunny nonexpansive
retract of E. It T satisfies the nowhere-normal outward condition

Tx ∈ Scx, for all x ∈ C, (2.3)

where Sx = {y ∈ E : y 6= x,Qy = x} and Scx is the complement of Sx, then
F (T ) = F (QT )

Lemma 2.4. Let C a closed convex subset of a strictly convex Banach space
E and T a nonexpansive mapping from C into E. Suppose that C is a sunny
nonexpansive retract of E. If F (T ) 6= ∅, then T satisfies the nowhere-normal
outward condition (2.3).

Finally, we need the following lemma, which is essentially Lemma 2 of Liu
[10] (see also Xu [21]).

Lemma 2.5. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnβn + γn, n ≥ 0,

where {λn}, {βn} and {γn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞
n=0 λn =∞,

(ii) lim supn→∞ βn ≤ 0 or
∑∞
n=1 λnβn <∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞
n=0 γn <∞.

Then limn→∞ sn = 0.
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3. Main results

Recall that a mapping T with domain D(T ) and range R(T ) in E is called
strongly pseudocontractive ([13]) if for some constant k < 1 and for all x, y ∈
D(T )

(λ− k)‖x− y‖ ≤ ‖(λI − T )(x)− (λI − T )(y)‖ (3.1)

for λ > k (with I denoting the identity mapping), while T is called a pseudo-
contraction if (3.1) holds for k = 1. Every nonexpansive mapping is a pseudo-
contraction. The converse is not true (for example, see [8]).

We need the following result for the existence of solutions of certain varia-
tional inequalities which Jung and Sahu [8] established recently.

Theorem JS. ([8, Theorem 3]) Let E be a reflexive Banach space having a
weakly sequentially continuous duality mapping Jϕ with gauge function ϕ. Let
C be a nonempty closed subset of E, A : C → C a continuous strongly pseudo-
contractive mapping with constant k ∈ [0, 1) and T : C → E a demicontinuous
pseudocontractive mapping such that the equation

x = tAx+ (1− t)Tx

has a solution xt in C for each t ∈ [0, 1). Suppose the path {xt} is bounded.
Then we have the following:

(a) lim
t→0+

xt = x̃ exists,

(b) x̃ is a fixed point of T and it is the unique solution of the variational
inequality:

〈(I −A)x̃, Jϕ(x̃− v)〉 ≤ 0 for all v ∈ F (T ).

Remark 1. (1) Theorem JS supplements Theorem 3 of Morales and Jung [14],
where A = u is a constant.

(2) Theorem JS also generalizes Theorem 3.10 of O’Hara et al. [16] and
Theorems 3.1 of Xu [23] to the viscosity type method for the more general
class of nonself-mappings which include the class of nonexpansive mappings.

First, we consider the explicit viscosity iterative scheme: for Q the sunny
and nonexpansive retraction of E onto C, T : C → E nonexpansive non-self-
mapping and f ∈ ΣC ,{

x0 ∈ C
xn+1 = Q(λnf(xn) + (1− λn)Txn).

(3.2)

Proposition 3.1. Let E be a reflexive and strictly convex Banach space having
a weakly sequentially continuous duality mapping Jϕ with gauge function ϕ. Let
C be a nonempty closed convex subset of E and T : C → E a nonexpansive
nonself-mapping with F (T ) 6= ∅. Suppose that C is a sunny nonexpansive
retract of E with Q as the sunny nonexpansive retraction. Let f ∈ ΣC and let
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{xn} be the sequence generated by (3.2). Let {λn} be a sequence in (0, 1) which
satisfies the condition:

(C1) limn→∞ λn = 0

and µ a Banach limit. Then

µn(〈(I − f)(P (f)), Jϕ(P (f)− xn)〉) ≤ 0,

where P : ΣC → F (T ) is defined by P (f) = limt→0+ xt and xt is defined by
xt = tf(xt) +QTxt, 0 < t < 1.

Proof. Let {xt} be the net generated by

xt = tf(xt) + (1− t)QTxt, 0 < t < 1. (3.3)

Since QT is a nonexpansive mapping from C into itself, by Theorem JS with
A = f a contraction and Lemmas 2.3 and 2.4, there exists limt→0 xt ∈ F (QT ) =
F (T ). Denote it by P (f). This implies that P is a mapping from ΣC onto F (T ).
Moreover P (f) is a solution of the variational inequality

〈(I − f)P (f), Jϕ(P (f)− v)〉 ≤ 0, f ∈ ΣC , v ∈ F (T ).

From (3.3), we have

‖xt − xn+1‖ = ‖(1− t)(QTxt − xn+1) + t(f(xt)− xn+1)‖.

Applying Lemma 2.1, we have

Φ(‖xt − xn+1‖) ≤ Φ((1− t)‖QTxt − xn+1‖)
+ t〈f(xt)− xn+1, Jϕ(xt − xn+1)〉.

(3.4)

Let p ∈ F . Now

‖xt − p‖ ≤t‖f(xt)− p‖+ (1− t)‖QTxt −QTp‖
≤ t‖f(xt)− p‖+ (1− t)‖xt − p‖.

This gives that

‖xt − p‖ ≤ ‖f(xt)− p‖ ≤ ‖f(xt)− f(p)‖+ ‖f(p)− p‖
≤ k‖xt − p‖+ ‖f(p)− p‖,

and so ‖xt − p‖ ≤ 1
1−k‖f(p) − p‖. Hence {xt} is bounded, so are {f(xt)} and

{QTxt} .
Now we show that ‖xn − z‖ ≤ max{‖x0 − z‖, 1

1−k‖f(z) − z‖} for all n ≥ 0
and all z ∈ F (T ) and so {xn} is bounded. For p ∈ F (T ), we also have

‖xn − p‖ ≤ max{‖x0 − p‖,
1

1− k
‖f(p)− p‖}
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for all n ≥ 0. Indeed, let p ∈ F (T ) and d = max{‖x0 − p‖, 1
1−k‖f(p) − p‖}.

Then by the nonexpansivity of T and f ∈ ΣC ,

‖x1 − p‖ = ‖Q(λ0f(x0) + (1− λ0)Tx0)−Qp‖
≤ (1− λ0)‖Tx0 − Tp‖+ λ0‖f(x0)− p‖
≤ (1− λ0)‖x0 − p‖+ λ0(‖f(x0)− f(p)‖+ ‖f(p)− p‖)
≤ (1− λ0)‖x0 − p‖+ λ0(k‖x0 − p‖+ ‖f(p)− p‖)
≤ (1− (1− k)λ0)d+ λ0(1− k)d = d.

Using an induction, we obtain

‖xn+1 − p‖ ≤ d, n ≥ 0.

Hence, it follows that {xn} is bounded, and so are {QTxn} and {f(xn)}. As a
consequence with the control condition (C1), we get

‖xn+1 −QTxn‖ ≤ λn+1‖Txn − f(xn)‖ → 0 (n→∞).

Observe also that

‖QTxt − xn+1‖ ≤ ‖xt − xn‖+ en,

where en = ‖xn+1 −QTxn‖ → 0 as n→∞, and

〈f(xt)− xn+1, Jϕ(xt − xn+1)〉 = 〈f(xt)− xt, Jϕ(xt − xn+1)〉
+ ‖xt − xn+1‖ϕ(‖xt − xn+1‖).

Thus it follows from (3.4) that

Φ(‖xt − xn+1‖) ≤ Φ((1− t)(‖xt − xn‖+ en))

+ t〈f(xt)− xt, Jϕ(xt − xn+1)〉
+ t‖xt − xn+1‖ϕ(‖xt − xn+1‖)

(3.5)

Applying the Banach limit µ to (3.5), we have

µn(Φ(‖xt − xn+1‖)) ≤ µn(Φ((1− t)(‖xt − xn‖+ en)))

+ tµn(〈f(xt)− xt, Jϕ(xt − xn+1)〉)
+ tµn(‖xt − xn+1‖ϕ(‖xt − xn+1‖))

(3.6)

and it follows from (3.6) that

µn(〈xt − f(xt), Jϕ(xt − xn)〉)

≤ 1
t
µn(Φ((1− t)‖xt − xn‖)− Φ(‖xt − xn‖))

+ µn(‖xt − xn+1‖ϕ(‖xt − xn+1‖))

= −1
t
µn

{∫ ‖xt−xn‖

(1−t)‖xt−xn‖
ϕ(τ)dτ

}
+ µn(‖xt − xn+1‖ϕ(‖xt − xn+1‖))

= µn(‖xt − xn‖(ϕ(‖xt − xn‖)− ϕ(τn))),

(3.7)
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for some τn satisfying (1− t)‖xt − xn‖ ≤ τn ≤ ‖xt − xn‖. Since ϕ is uniformly
continuous on compact intervals of R+,

‖xt − xn‖ − τn ≤ t‖xt − xn‖

≤ t
(

2
1− k

‖f(p)− p‖+ ‖x0 − p‖
)
→ 0 (as t→ 0),

we conclude from (3.7) that

µn(〈(I − f)(P (f)),Jϕ(P (f)− xn)〉)
≤ lim sup

t→0
µn(〈xt − f(xt), Jϕ(xt − xn)〉) ≤ 0,

where P : ΣC → F is defined by P (f) = limt→0 xt. �

Recall that the sequence {xn} in E is said to be weakly asymptotically regular
if

w − lim
n→∞

(xn+1 − xn) = 0, that is, xn+1 − xn ⇀ 0

and asymptotically regular if

lim
n→∞

‖xn+1 − xn‖ = 0,

respectively.
Using Proposition 3.1, we give the following main result.

Theorem 3.2. Let E be a reflexive and strictly convex Banach space having a
weakly sequentially continuous duality mapping Jϕ with gauge function ϕ. Let
C be a nonempty closed convex subset of E and T : C → E a nonexpansive
nonself-mapping with F (T ) 6= ∅. Suppose that C is a sunny nonexpansive
retract of E with Q as the sunny nonexpansive retraction. Let f ∈ ΣC and let
{xn} be the sequence generated by (3.2). Let {λn} be a sequence in (0, 1) which
satisfies the conditions:

(C1) limn→∞ λn = 0;
(C2)

∑∞
n=0 λn =∞.

If {xn} is weakly asymptotically regular, then {xn} converges strongly to P (f)
∈ F (T ), where P (f) is the unique solution of the variational inequality

〈(I − f)(P (f)), Jϕ(P (f)− v)〉 ≤ 0, f ∈ ΣC , v ∈ F (T ).

Proof. Let xt be defined by (3.3), that is, xt = tf(xt)+(1−t)QTxt for 0 < t < 1
and limt→0 xt := P (f) ∈ F (QT ) = F (T ) (by using Theorem JS with A = f a
contraction and Lemmas 2.3 and 2.4). Then P (f) is a solution of a variational
inequality

〈(I − f)(P (f)), Jϕ(P (f)− v)〉 ≤ 0 f ∈ ΣC , v ∈ F (T ).

We proceed with the following steps:
Step 1. We show that ‖xn − z‖ ≤ max{‖x0 − z‖, 1

1−k‖f(z) − z‖} for all
n ≥ 0 and all z ∈ F (T ) as in the proof of Proposition 3.1. Hence {xn} is
bounded and so are {QTxn} and {f(xn)}.
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Step 2. We show that lim supn→∞〈(I − f)(P (f)), Jϕ(P (f)− xn)〉 ≤ 0. To
this end, put

an := 〈(I − f)(P (f)), Jϕ(P (f)− xn)〉, n ≥ 1.

Then Proposition 3.1 implies that µn(an) ≤ 0 for any Banach limit µ. Since
{xn} is bounded, there exists a subsequence {xnj

} of {xn} such that

lim sup
n→∞

(an+1 − an) = lim
j→∞

(anj+1 − anj
)

and xnj
⇀ q ∈ E. This implies that xnj+1 ⇀ q since {xn} is weakly asymp-

totically regular. From the weak sequential continuity of duality mapping J ,
we have

w − lim
j→∞

Jϕ(P (f)− xnj+1) = w − lim
j→∞

Jϕ(P (f)− xnj ) = Jϕ(P (f)− q),

and so
lim sup
n→∞

(an+1 − an)

= lim
j→∞
〈(I − f)(P (f)), Jϕ(P (f)− xnj+1)− Jϕ(P (f)− xnj )〉 = 0.

Then Lemma 2.2 implies that lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

〈(I − f)P (f), J(P (f)− xn)〉 ≤ 0.

Step 3. We show that limn→∞ ‖xn − P (f)‖ = 0. As a matter of fact, we
have
xn+1 − P (f) = xn+1 − (λnf(xn) + (1− λn)P (f)) + λn(f(xn)− P (f))

= Q(λnf(xn) + (1− λn)Txn)−Q(λnf(xn) + (1− λn)P (f))

+ λn(f(xn)− f(P (f))) + λn(f(P (f))− P (f)).

As a consequence, since Φ is an increasing convex function with Φ(0) = 0, by
applying Lemma 2.1, we obtain

Φ(‖xn+1 − P (f)‖)
≤ Φ(‖Q(λnf(xn) + (1− λn)Txn)−Q(λnf(xn) + (1− λn)P (f))

+ λn(f(xn)− f(P (f)))‖)
+ λn〈f(P (f))− P (f), Jϕ(xn+1 − P (f))〉

≤ Φ((1− λn)‖Txn − P (f)‖+ kαn‖xn − P (f)‖)
+ λn〈f(P (f))− P (f), Jϕ(xn+1 − P (f))〉

≤ (1− (1− k)λn)Φ(‖xn − P (f)‖)
+ λn〈f(P (f))− P (f), Jϕ(xn+1 − P (f))〉.

(3.8)

Put

αn = (1− k)λn and δn =
1

1− k
〈(I − f)(P (f)), Jϕ(P (f)− xn+1)〉.
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From (C1), (C2) and Step 2, it follows that αn → 0,
∑∞
n=0 αn = ∞ and

lim supn→∞ δn ≤ 0. Since (3.8) reduces to

Φ(‖xn+1 − P (f)‖) ≤ (1− αn)Φ(‖xn − P (f)‖) + αnδn,

from Lemma 2.5, we conclude that limn→∞Φ(‖xn − Q(f)‖) = 0, and thus
limn→∞ xn = P (f). This completes the proof. �

Corollary 3.3. Let E be a reflexive and strictly convex Banach space having a
weakly sequentially continuous duality mapping Jϕ with gauge function ϕ. Let
C be a nonempty closed convex subset of E and T : C → E a nonexpansive
nonself-mapping with F (T ) 6= ∅. Suppose that C is a sunny nonexpansive
retract of E with Q as the sunny nonexpansive retraction. Let f ∈ ΣC and let
{xn} be the sequence generated by (3.2). Let {λn} be a sequence in (0, 1) which
satisfies the conditions:

(C1) limn→∞ λn = 0;
(C2)

∑∞
n=0 λn =∞.

If {xn} is asymptotically regular, then {xn} converges strongly to P (f) ∈ F (T ),
where P (f) is the unique solution of the variational inequality

〈(I − f)(P (f)), Jϕ(P (f)− v)〉 ≤ 0, f ∈ ΣC , v ∈ F (T ).

Remark 2. If {λn} in Corollary 3.3 satisfies conditions (C1), (C2) and

(C3)
∑∞
n=1 |λn+1 − λn| <∞; or

(C4) limn→∞
λn

λn+1
= 1 or, equivalently, limn→∞

λn−λn+1
λn+1

= 0;

or the perturbed control condition:
(C5) |λn+1 − λn| ≤ o(λn+1) + σn,

∑∞
n=0 σn <∞,

then the sequence {xn} generated by (3.2) is asymptotically regular. Now we
give only the proof in case when {λn} satisfies the conditions (C1), (C2) and
(C5). By Step 1 above, there exists a constant L > 0 such that for all n ≥ 0,

‖f(xn)‖+ ‖Txn‖ ≤ L.

So we obtain, for all n ≥ 0,

‖xn+1 − xn‖
=‖Q(λnf(xn) + (1− λn)Txn)

−Q(λn−1f(xn−1) + (1− λn−1)Txn−1)‖
≤ ‖(1− λn)(Txn − Txn−1)

+ (λn − λn−1)(f(xn−1)− Txn−1) + λn(f(xn)− f(xn−1))‖
≤ (1− λn)‖xn − xn−1‖+ L|λn − λn−1|+ kλn‖xn − xn−1‖
≤ (1− (1− k)λn)‖xn − xn−1‖+ (o(λn) + σn−1)L.

(3.9)
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By taking sn+1 = ‖xn+1 − xn‖, αn = (1 − k)λn, αnβn = o(λn)L and γn =
σn−1L, from (3.9) we have

sn+1 ≤ (1− αn)sn + αnβn + γn.

Hence, by (C1), (C2), (C5) and Lemma 2.5,

lim
n→∞

‖xn+1 − xn‖ = 0.

In view of this observation, we have the following:

Corollary 3.4. Let E be a uniformly convex Banach space having a weakly
sequentially continuous duality mapping Jϕ with gauge function ϕ. Let C be a
nonempty closed convex subset of E and T : C → E a nonexpansive nonself-
mapping with F (T ) 6= ∅. Suppose that C is a sunny nonexpansive retract of
E with Q as the sunny nonexpansive retraction. Let f ∈ ΣC and let {xn}
be the sequence generated by (3.2). Let {λn} be a sequence in (0, 1) which
satisfies the conditions (C1), (C2) and (C5) (or the conditions (C1), (C2) and
(C3), or the conditions (C1), (C2) and (C4)). Then {xn} converges strongly to
P (f) ∈ F (T ), where P (f) is the unique solution of the variational inequality

〈(I − f)(P (f)), Jϕ(P (f)− v)〉 ≤ 0, f ∈ ΣC , v ∈ F (T ).

Remark 3. (1) Theorem 3.2 is a supplement of Theorem 2.4 of Song and Chen
[19] by using the weak asymptotic regularity on {xn} instead of the condition
(C3)

∑∞
n=0 |αn+1 − αn| <∞ without the weak inwardness condition on T .

(2) Theorem 3.2 also develops Theorem 4.2 of Matsushita and Takahashi [12]
to the viscosity iteration method in different Banach spaces together with the
weak asymptotic regularity on {xn} instead of the condition (C3)

∑∞
n=0 |αn+1−

αn| <∞.
(3) The condition (C5) on {λn} in Corollary 3.4 is independent of condition

(C3) or (C4) in Remark 2, which Theorem 2.4 of Song and Chen [19] has used.
For this fact, see [2, 6].

(4) Theorem 3.2 generalizes Theorem 3.2 of Xu [22] to the case of nonself-
mappings.

Next, we consider the implicit viscosity iterative scheme. Let Q be the sunny
nonexpansive retraction of E onto C and T : C → E nonexpansive mapping
and f ∈ ΣC . Following Marino and Trombetta [11], we define the contraction
St := Sft from C into itself by

Stx = Q(tf(x) + (1− t)Tx), x ∈ C.

Then Banach’s contraction principle yields a unique point xt ∈ C that is fixed
by St, that is, we have the implicit viscosity iterative scheme

xt = Q(tf(xt) + (1− t)Txt). (3.10)
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By using directly the proof of Theorem 2.2 in Song and Chen [19] together
with Lemma 2.4 and Lemma 2.5, we have the following result:

Theorem 3.5. Let E be a reflexive and strictly convex Banach space having
a weakly sequentially continuous duality mapping Jϕ with gauge function ϕ.
Let C a nonempty closed convex subset of E and T : C → E a nonexpansive
nonself-mapping with F (T ) 6= ∅. Suppose that C is a sunny nonexpansive
retract of E with Q as the sunny nonexpansive retraction. For each t ∈ (0, 1)
and f ∈ ΣC , let {xt} be the net generated by (3.10). Then {xt} converges
strongly as t→ 0 to a fixed point of T . If we define R : ΣC → F (T ) by

R(f) := lim
t→0

xt, f ∈ ΣC ,

then R(f) is the unique solution of the variational inequality

〈(I − f)(R(f)), Jϕ(R(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ).

Proof. Let xt be defined by (3.10), that is, xt = Q(tf(xt) + (1 − t)Txt) for
0 < t < 1. As in the proof of Theorem 2.2 in [19], we have ‖xt−QTxt‖ → 0 as
t→ 0. Note that F (T ) = F (QT ) by Lemmas 2.4 and 2.5. Then the remainder
of the proof follows from the proof of Theorem 2.2 in [19]. �

Remark 4. (1) Theorem 3.5 is a complement of Theorem 2.2 of Song and Chen
[19] without the weak inwardness condition on T .

(2) Theorems 3.5 also generalizes Theorem 4.1 of Xu [22] (and Theorem 2
of Moudafi [15]) to the class of nonself-mappings.

(3) Theorem 3.5 extends Theorem 4 of Jung and Kim [7] and Theorem 3
of Xu and Yin [24] to the viscosity iteration method for the class of mappings
which needn’t satisfy the weak inwardness condition.
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