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LOCATING ROOTS OF A CERTAIN CLASS
OF POLYNOMIALS

Ioannis K. Argyros and Säıd Hilout

Abstract. We introduce a special class of real recurrent polynomials fm

(m ≥ 1) of degree m + 1, with positive roots sm, which are decreasing as

m increases. The first root s1, as well as the last one denoted by s∞ are
expressed in closed form, and enclose all sm (m > 1).

This technique is also used to find weaker than before [6] sufficient

convergence conditions for some popular iterative processes converging
to solutions of equations.

1. Introduction

We introduce a special class of recurrent polynomials fm (m ≥ 1) of degree
m+ 1 with real coefficients.

Then, we find sufficient conditions under which each polynomial fm has a
positive root sm, such that sm+1 ≤ sm (m ≥ 1). The first root s1, as well as
the last one denoted by s∞ are expressed in simple closed form.

Applications are provided. In the first one, we show how to use s1 and s∞
to locate any sm belonging in (s∞, s1] (m ≥ 1).

In the second one, using this technique on Newton’s method (16), we show
that the famous for its simplicity and clarity Newton–Kantorovich condition
(46) for solving equations can always replaced by a weaker one (49).

We also show how to use our results to generate majorizing sequences ap-
pearing in connection for solving abstract equations in a Banach space setting
using Newton–type methods [3], [6].

2. Enclosing roots of polynomials

We introduce the main result of this section on enclosing roots of polynomi-
als.

Theorem 2.1. Assume:
there exist constants K ≥ 0, M ≥ 0, µ ≥ 0, L ≥ 0, ` ≥ 0, and η ≥ 0;
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Define a sequence of polynomials {fn} (n ≥ 1) on [0,+∞) by:

fn(s) = K sn η + 2 (M (1 + s+ s2 + · · ·+ sn−1) η + µ)

+ 2 s L (1 + s+ s2 + · · ·+ sn) η + 2 s (`− 1).
(1)

f1 has a minimal root s1 in [0, 1), satisfying

s1 ≤ δ+, (2)

where,

δ+ =
2 (K − 2 M)

K +
√
K2 + 8 L (K − 2 M)

, (3)

2 M < K, (4)
and

(2 L+K) η < 2 (1− `) (5)
Then, each polynomial fn (n ≥ 1) has a minimal root sn in [0, 1).
Moreover, the following estimates hold for all n ≥ 1:

s∞ ≤ s? ≤ sn+1 ≤ sn, (6)

where,
s? = lim

n−→∞
sn, (7)

and,
s∞ is the minimal root of polynomial

f∞(s) = (1− `) s2 − (1− `− L η + µ) s+M η + µ (8)

in [0, 1).

Proof. We need to find a relationship between two consecutive fm:

fm+1(s) = K sm+1 η + 2
(
M (1 + s+ s2 + · · ·+ sm−1 + sm) η + µ

)
+ 2 s L (1 + s+ · · ·+ sm + sm+1) η + 2 s (`− 1)

= K sm+1 η −K sm η +K sm η

+ 2
(
M (1 + s+ s2 + · · ·+ sm−1) η + µ

)
+ 2 M sm η

+ 2 s L (1 + s+ · · ·+ sm) η + 2 s L sm+1 η + 2 s (`− 1)

= fm(s) +K sm+1 η −K sm η + 2 M sm η + 2 s L sm+1 η

= fm(s) + g(s) sm η,

(9)

where,
g(s) = 2 L s2 +K s+ 2 M −K. (10)

Note that in view of (4), function g has a positive zero δ+ given by (3), and

g(s) < 0 s ∈ (0, δ+). (11)
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By hypothesis, the function f1 has a minimal positive zero s1. Using (4), it
is simple algebra to show s1 ∈ [0, 1). It then follows from (9) and (10):

f2(s1) = f1(s1) + g(s1) sm
1 η

= g(s1) sm
1 η < 0,

(12)

since f1(s1) = 0, and g(s1) < 0. We also have from (1):

fm(0) = 2 (M η + µ) > 0 (m ≥ 1). (13)
It follows from the intermediate value theorem that there exists a minimal

s2 ∈ (0, s1), such that f2(s2) = 0. Let us assume: there exists sm ∈ (0, sm−1),
with fm(sm) = 0. As in (12) we have

fm+1(sm) = fm(sm) + g(sm) sm
m η < 0. (14)

It follows from the intermediate value theorem that there exists a minimal
sm+1 ∈ (0, sm), such that fm+1(sm+1) = 0.

We also have for f∞(s) = lim
m→∞

fm(s), s ∈ [0, 1):

f∞(s∞) = 2
(

M

1− s∞
η + µ

)
+

2 s∞ L

1− s∞
η + 2 s∞ (`− 1) = 0,

by the choice of s∞. Note also that by (5), and (8), s∞ exists in (0, 1).
Sequence {sm} is non–increasing, bounded below by zero, and as such it

converges to its unique maximum lowest bound s? satisfying s? ≥ s∞.
That completes the proof of Theorem 2.1. �

Remark 1. The existence of s1 can be guaranteed by any of the conditions
below:

The discriminant ∆ of polynomial f1 is non–negative, or

(K + 4 L+ 2 M) η < 2 (1− `− µ). (15)

In this case, (5) can be dropped, since it is implied by (15). Indeed, if ∆ ≥ 0,
and (5) holds, it is simple algebra to show s1 exists, and s1 ∈ [0, 1). Moreover,
by applying the intermediate value theorem on f1 for s ∈ [0, 1), we see again
that s1 exists, and s1 ∈ [0, 1).

3. Applications

Let us provide an example where s2 is in [s∞, s1).

Example 3.1. Let K = 1, L = .5, M = .25, and η = µ = ` = .01. Then,
using (1), and (8), we obtain:

f1(s) = .01 s2 − 1.96 s+ .025, f2(s) = .01 s3 + .02 s2 − 1.965 s+ .025,

f∞(s) = .99 s2 − .995 s+ .0125,

s1 = .01275, s2 = 0.01274, s∞ = .01272.
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Note also that hypotheses (4), (5), and (15) are satisfied with the above
choices of K, L, M , η, µ, and `.

We shall show that Theorem 2.1 can be used to provide new sufficient con-
vergence conditions for the semilocal convergence of Newton–type methods
(NTM):

xn+1 = xn −A(xn)−1 (F (xn) +G(xn)) (n ≥ 0), (x0 ∈ D) (16)

to a locally unique solution x? of equation

F (x) +G(x) = 0. (17)

Here, F is a Fréchet–differentiable operator defined on a convex subset D
on a Banach space X , with values in a Banach space Y, G : D −→ Y is a
continuous operator, and A(x) ∈ L(X ,Y) the space of bounded linear operators
is an approximation to F ′(x) [1], [3], [6].

We need a lemma on majorizing sequences for (NTM).

Lemma 3.2. Under the hypotheses of Theorem 2.1, define δ0, and δ∞ by:

δ0 =
K η + 2 µ
1− L η − `

, (18)

δ∞ = 2 s∞, (19)
and further, assume:

s1 ≤ δ+. (20)
Choose:

δ

2
∈ [s1, δ+]. (21)

Then, sequence {tn} (n ≥ 0) given by

t0 = 0, t1 = η,

tn+2 = tn+1 +
K (tn+1 − tn) + 2 (M tn + µ)

2 (1− L tn+1 − `)
(tn+1 − tn), (n ≥ 0), (22)

is well defined, nondecreasing, bounded above by

t?? =
2 η

2− δ
, (23)

and converges to its unique least upper bound t? ∈ [0, t??].

Moreover the following estimates hold for all n ≥ 1:

tn+1 − tn ≤
δ

2
(tn − tn−1) ≤

(
δ

2

)n

η, (24)
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and

t? − tn ≤
2 η

2− δ

(
δ

2

)n

.

Note that the most appropriate choice for δ seems to be δ = 2 s1.

Proof. We shall show using induction on the integer m:

0 < tm+2 − tm+1

=
K (tm+1 − tm) + 2 (M tm + µ)

2 (1− L tm+1 − `)
(tm+1 − tm)

≤ δ

2
(tm+1 − tm),

(25)

and

`+ L tm+1 < 1. (26)
If (25), and (26) hold, we have (24) holds, and

tm+2 ≤ tm+1 +
δ

2
(tm+1 − tm)

≤ tm +
δ

2
(tm − tm−1) +

δ

2
(tm+1 − tm)

≤ η +
(
δ

2

)
η + · · ·+

(
δ

2

)m+1

η

=
1−

(
δ

2

)m+2

1− δ

2

η

<
2 η

2− δ
= t?? by (23).

(27)

It will then also follow that sequence {tm} is increasing, bounded above by
t??, and as such it will converge to some t? ∈ [0, t??].

Estimates (25) and (26) hold by the initial conditions for m = 0. Indeed
(25) and (26) become:

0 < t2 − t1 =
K (t1 − t0) + 2 (M t0 + µ)

2 (1− L t1 − `)
(t1 − t0)

=
K η + 2 µ

2 (1− L η − `)
(t1 − t0) =

δ0
2

(t1 − t0) ≤ δ

2
(t1 − t0),

L η + ` < 1,
which are true by the choice of δ0, δ, (5), (22), and the initial conditions. Let
us assume (24)–(26) hold for all m ≤ n+ 1.

Estimate (25) can be re–written as
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K (tm+1 − tm) + 2 (M tm + µ) ≤ (1− L tm+1 − `) δ
or

K (tm+1 − tm) + 2 (M tm + µ) + δ L tm+1 + δ `− ` ≤ 0, (28)

or

K

(
δ

2

)m

η+ 2
(
M

1−
(
δ

2

)m

1− δ

2

η+µ

)
+ δ L

1−
(
δ

2

)m+1

1− δ

2

η+ δ (`− 1) ≤ 0.

(29)

Replace
δ

2
by s, and define functions fm on [0,+∞) (m ≥ 1) by (1).

Estimate (29) certainly holds, if:

fm(s) ≤ 0 s ∈ [s1, δ+], (m ≥ 1). (30)

Estimate (30) holds by Theorem 2.1. That completes the induction for (25),
since (21) holds.

Finally, sequence {tn} is non–decreasing, bounded above by t??, and as such
that it converges to its unique least upper bound t?.

That completes the proof of Lemma 3.2.
�

By simply replacing the majorizing sequence in [6] by (22), we obtain the
following semilocal convergence theorem for (NTM).

Theorem 3.3. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator, G :
D −→ Y be a continuous operator, and let A(x) ∈ L(X ,Y) be an approximation
of F ′(x). Assume that there exist an open convex subset D of X , x0 ∈ D, a
bounded inverse A(x0)−1 of A(x0), and constants K > 0, M > 0, µ0 ≥ 0,
µ1 ≥ 0, L > 0, ` ≥ 0, η > 0, such that for all x, y ∈ D:

‖ A(x0)−1 [F (x0) +G(x0)] ‖≤ η, (31)
‖ A(x0)−1 [F ′(x)− F ′(y)] ‖≤ K ‖ x− y ‖, (32)
‖ A(x0)−1 [F ′(x)−A(x)] ‖≤M ‖ x− x0 ‖ +µ0, (33)
‖ A(x0)−1 [A(x)−A(x0)] ‖≤ L ‖ x− x0 ‖ +`, (34)
‖ A(x0)−1 [G(x)−G(y)] ‖≤ µ1 ‖ x− y ‖, (35)

U(x0, t
?) = {x ∈ X , ‖ x− x0 ‖≤ t?} ⊆ D,

and the hypotheses of Lemma 3.2 hold with µ = µ0 + µ1.
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Then, sequence {xn} (n ≥ 0) generated by (NTM) is well defined, remains
in U(x0, t

?) for all n ≥ 0, and converges to a solution x? of equation (17) in
U(x0, t

?).
Moreover, the following estimates hold for all n ≥ 0:

‖ xn+1 − xn ‖≤ tn+1 − tn, (36)

and
‖ xn − x? ‖≤ t? − tn, (37)

where, sequence {tn} (n ≥ 0), and t? are given in Lemma 3.2.
Furthermore, the solution x? of equation (17) is unique in U(x0, t

?) provided
that: (

K

2
+M + L

)
t? + µ+ ` < 1.

Application 3.4. Using (31)–(34), and hypothesis

hK = σ η ≤ 1
2

(1− b)2, µ+ ` < 1 (38)

where, σ = max{K,M+L}, with b = µ+`, a semilocal convergence theorem
was provided in [5], [8], [9].

(a) Let us compare the error bounds in this case. The majorizing sequence
given in [5], [8], [9], is:

v0 = 0, v1 = η,

vn+2 = vn+1 +
f(vn+1)
q(vn+1)

, (n ≥ 0), (39)

where,
f(v) =

σ

2
v2 − (1− b) v + η,

and
q(v) = 1− L v − `.

We now show that the error bounds obtained in Theorem 3.3 are
more precise than the corresponding ones in the above references using
(38).

Proposition 3.5. Under the hypotheses of Theorem 3.3, and condition (38),
the following error bounds hold:

tn+1 ≤ vn+1 (n ≥ 1), (40)
tn+1 − tn ≤ vn+1 − vn (n ≥ 1), (41)
t? − tn ≤ v? − vn (n ≥ 0), (42)

and
t? ≤ v?. (43)

Moreover strict inequality holds in (40) and (41) if K < M + L.
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Proof. We use mathematical induction on m to first show (40) and (41). For
n = 0 in (22) we obtain:

t2 − η =

K

2
η2 + µ η

1− `− L η

≤

σ

2
η2 + (M · 0 + µ) η

1− `− L η

≤

σ

2
η2 +M (η − 0) + µ (η − 0)− q(0) (η − 0) + f(0)

q(η)

≤

σ

2
v2
1 − (1− µ− `) v1 + η − (σ −M − L) v0 (v1 − v0)

q(v1)

≤ f(v1)
q(v1)

= v2 − v1,

and
t2 ≤ v2.

Assume:
ti+1 ≤ vi+1, ti+1 − ti ≤ vi+1 − vi. (44)

Using (22), (39), and (44), we obtain in turn:

ti+2 − ti+1 =

K

2
(ti+1 − ti)2 + (M ti + µ) (ti+1 − ti)

1− `− L ti+1

≤

σ

2
(vi+1 − vi)2 + (M vi + µ) (vi+1 − vi)

q(vi+1)

=

σ

2
(vi+1 − vi)2 + (M vi + µ− q(vi))(vi+1 − vi) + f(vi)

q(vi+1)

=

σ

2
v2

i+1 − (1− µ− `) vi+1 + η − (σ −M − L) vi (vi+1 − vi)

q(vi+1)

≤ f(vi+1)
q(vi+1)

= vi+2 − vi+1,

which show (40) and (41) for all (n ≥ 1).
Let j ≥ 0, we can get:

ti+j − ti ≤ (ti+j − ti+j−1) + (ti+j−1 − ti+j−2) + · · ·+ (ti+1 − ti)
≤ (vi+j − vi+j−1) + (vi+j−1 − vi+j−2) + · · ·+ (vi+1 − vi)
≤ vi+1 − vi.

(45)
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By letting j →∞ in (45) we obtain (42).
Finally (42) implies (43) (since t1 = v1 = 0). It can easily be seen from (22),

and (39), that strict inequality holds in (40) and (41) if K < M + L.
That completes the proof of Proposition 3.5.

�

Note also that the above advantages hold even if hypotheses of Theorem 3.3
are replaced by (38).

(b) We can now compare our Theorem 3.3 with the corresponding one in
[9] in the case of Newton’s method (A(x) = F ′(x), G(x) = 0, (x ∈ D)):

Hypothesis (38) reduces to the famous for its simplicity and clarity
Newton–Kantorovich hypothesis [5], [6] [8], [9], for solving nonlinear
equations

hK = K η ≤ 1
2
, (46)

since σ = K, and µ0 = µ1 = ` = M = 0.
Note that in this case, functions fm (m ≥ 1) should be defined by

fm(s) =
(
K sm−1 + 2 L (1 + s+ s2 + · · ·+ sm)

)
η − 2,

and

fm+1(s) = fm(s) + g(s) sm−1 η.

But this time, the conditions corresponding to Theorem 2.1 and
Lemma 3.2 should be:

δ1 = max{δ0
2
, δ+} ≤ s∞ = 1− L η, (47)

whereas,

δ

2
∈
[
δ1, δ∞

]
. (48)

Howeover, it is simple algebra to show that conditions (47)–(48)
reduce to:

hA = L η ≤ 1
2
, (49)

where,

L =
1
8

(
K + 4 L+

√
K2 + 8 K L

)
.

Note also that

L ≤ K (50)
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holds in general, and
K

L
can be arbitrarily large.

In view of (46), (49) and (50), we get

hK ≤
1
2

=⇒ hA ≤
1
2
, (51)

but not necessarily vice verca unless if L = K.

In the example that follows, we show that
K

L
can arbitrarily large. Indeed:

Example 3.6. Let X = Y = R, x0 = 1, and define scalar functions F and G
by

F (x) = c0 x+ c1 + c2 sin ec3 x, G(x) = 0, (52)

where, ci, i = 0, 1, 2, 3 are given parameters. Using (52), it can easily be seen

that for c3 large and c2 sufficiently small,
K

L
can be arbitrarily large.

In the next examples, we show (46) is violated but (49) holds.

Example 3.7. Let X = Y = R, x0 = 1, U0 = {x : |x − x0| ≤ 1 − β},

β ∈
[
0,

1
2

)
, and define function F on U0 by

F (x) = x3 − β. (53)

Using hypotheses of Theorem 3.3, we get:

η =
1
3

(1− β), L = 3− β, and K = 2 (2− β).

The Newton–Kantorovich condition (46) is violated, since

4
3

(1− β) (2− β) > 1 for all β ∈
[
0,

1
2

)
.

Hence, there is no guarantee that Newton’s method (16) converges to x? =
3
√
β, starting at x0 = 1.

However, our condition (49) is true for all β ∈ I =
[
.450339002,

1
2

)
. Hence,

the conclusions of our Theorem 3.3 can apply to solve equation (53) for all
β ∈ I.

Example 3.8. Let X = Y = C[0, 1] be the space of real–valued continuous
functions defined on the interval [0, 1] with norm

‖ x ‖= max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the ”Cubic” integral equation
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u(s) = u3(s) + λu(s)
∫ 1

0

q(s, t)u(t) dt+ y(s)− θ. (54)

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1]×[0, 1]; the parameter λ is a real number called the ”albedo” for scattering;
y(s) is a given continuous function defined on [0, 1] and x(s) is the unknown
function sought in C[0, 1]. Equations of the form (54) arise in the kinetic theory
of gasses [3]. For simplicity, we choose u0(s) = y(s) = 1, and q(s, t) =

s

s+ t
,

for all s ∈ [0, 1], and t ∈ [0, 1], with s+ t 6= 0. If we let D = U(u0, 1− θ), and
define the operator F on D by

F (x)(s) = x3(s)− x(s) + λx(s)
∫ 1

0

q(s, t)x(t) dt+ y(s)− θ, (55)

for all s ∈ [0, 1], then every zero of F satisfies equation (54).
We have the estimates:

max
0≤s≤1

∣∣∣∣∫ s

s+ t
dt

∣∣∣∣ = ln 2.

Therefore, if we set ξ =‖ F ′(u0)−1 ‖, then it follows from hypotheses of
Theorem 3.3 that

η = ξ (|λ| ln 2 + 1− θ),
K = 2 ξ (|λ| ln 2 + 3 (2− θ)) and L = ξ (2 |λ| ln 2 + 3 (3− θ)).

It follows from Theorem 3.3 that if condition (49) holds, then problem (54)
has a unique solution near u0. This assumption is weaker than the one given
before using the Newton–Kantorovich hypothesis (46).

Note also that L < K for all θ ∈ [0, 1].

Example 3.9. Consider the following nonlinear boundary value problem [3]{
u′′ = −u3 − γ u2

u(0) = 0, u(1) = 1.
It is well known that this problem can be formulated as the integral equation

u(s) = s+
∫ 1

0

Q(s, t) (u3(t) + γ u2(t)) dt (56)

where, Q is the Green function:

Q(s, t) =
{

t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0

|Q(s, t)| = 1
8
.

Let X = Y = C[0, 1], with norm
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‖ x ‖= max
0≤s≤1

|x(s)|.

Then problem (56) is in the form (17), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0

Q(s, t) (x3(t) + γ x2(t)) dt,

and
G(x) (s) = 0.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0

Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

If we set u0(s) = s, and D = U(u0, R), then since ‖ u0 ‖= 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that 2 γ < 5, then

‖ I − F ′(u0) ‖ ≤ 3 ‖ u0 ‖2 +2 γ ‖ u0 ‖
8

=
3 + 2 γ

8
,

‖ F ′(u0)−1 ‖ ≤ 1

1− 3 + 2 γ
8

=
8

5− 2 γ
,

‖ F (u0) ‖ ≤ ‖ u0 ‖3 +γ ‖ u0 ‖2

8
=

1 + γ

8
,

‖ F (u0)−1 F (u0) ‖ ≤ 1 + γ

5− 2 γ
.

On the other hand, for x, y ∈ D, we have

[(F ′(x)−F ′(y))v] (s) = −
∫ 1

0

Q(s, t) (3 x2(t)−3 y2(t)+2 γ (x(t)−y(t))) v(t) dt.

Consequently (see [3]),

‖ F ′(x)− F ′(y) ‖≤ γ + 6 R+ 3
4

‖ x− y ‖,

‖ F ′(x)− F ′(u0) ‖≤ 2 γ + 3 R+ 6
8

‖ x− u0 ‖ .

Therefore, conditions of Theorem 3.3 hold with

η =
1 + γ

5− 2 γ
, K =

γ + 6 R+ 3
4

, L =
2 γ + 3 R+ 6

8
.

Note also that L < K.
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