

GENERALIZED F-IMPLICIT MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS AND COMPLEMENTARITY PROBLEMS

BYUNG-SOO LEE*, M. FIRDOSH KHAN, AND SALAHUDDIN

ABSTRACT. In this paper, we study generalized F-implicit multivalued variational inequality problems on a real normed vector space setting. As an application, we study generalized F-implicit multivalued complementarity problems.

1. Preliminaries

Let X be a real normed vector space with a dual space X^* and $\langle \cdot, \cdot \rangle$ be the dual pair of X^* and X. Let X and X^* be endowed with their respective norm topologies. Let K be a nonempty closed convex subset of X. A function $F: K \to \mathbb{R}$ and mappings $g: K \to K, T, A: K \to 2^{X^*}$ are assumed to be given. The generalized F-implicit multivalued variational inequality problem (in short, GF-IMVIP) is finding an $x^* \in K$ such that

$$\sup_{s \in A(x^*), t \in T(x^*)} \langle N(s,t), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x)) \text{ for } x \in K, (1.1)$$

where $N: X^* \times X^* \to X^*$ be a mapping.

A solution of (1.1) is called a weak solution in the sense that if A and T have compact set-values, then for each $x \in K$ there are $s \in A(x^*)$, $t \in T(x^*)$ (depending on x) such that

$$\langle N(s,t), g(x) - g(x^*) \rangle \geq F(g(x^*)) - F(g(x)).$$

In contrast, we say that x^* is a strong solution of (1.1) if there exist $s^* \in A(x^*)$, $t^* \in T(x^*)$ such that

$$\langle N(s^*, t^*), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x))$$
 for $x \in K$.

©2010 The Youngnam Mathematical Society

Received May 14, 2009; Accepted April 12, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 49J40,\ 47H19.$

Key words and phrases. generalized F-implicit multivalued variational inequality problem, generalized F-implicit multivalued complementarity problem, strong solution, weak solution.

^{*} corresponding author.

The following generalized F-implicit multivalued complementarity problem (GF-IMCP) corresponding to (GF-IMVIP) is also considered as an applications:

Find $x^* \in K$, $s^* \in A(x^*)$ and $t^* \in T(x^*)$ such that

 $\langle N(s^*, t^*), g(x^*) \rangle + F(g(x^*)) = 0$

and

$$\langle N(s^*, t^*), g(y) \rangle + F(g(y)) \ge 0 \text{ for } y \in K.$$

Remark 1.1. The following are some special cases of (GF-IMVIP) and (GF-IMCP).

1. If $T \equiv 0$, then (1.1) is equivalent to finding $x^* \in K$ and $s \in A(x^*)$ such that

 $\sup_{s \in A(x^*)} \langle N(s, N(s)), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x)) \text{ for } x \in K, \quad (1.2)$

where $N: X^* \to X^*$ is a mapping.

2. If N is an identity mapping and g(x) = x, then (1.2) is collapse to the problem of finding $x^* \in K$, $s \in A(x^*)$ such that

$$\sup_{\in A(x^*)} \langle s, x - g(x^*) \rangle \ge F(g(x^*)) - F(x) \text{ for } x \in K,$$
(1.3)

introduced by Zeng et al. [11].

3. If A is single valued, then (1.3) is equivalent to finding $x^* \in K$ such that

$$\langle T(x^*), x - g(x^*) \rangle \ge F(g(x^*)) - F(x) \text{ for } x \in K,$$

introduced and studied by Huang and Li [5] in a Banach space setting. 4. If $T \equiv 0$, N is an indentity and g(y) = y for $y \in K$, then (GF-IMCP)

reduces to finding $x^* \in K$ and $s^* \in A(x^*)$ such that

$$\langle s^*, g(x^*) \rangle + F(g(x^*)) = 0$$

and

$$\langle s^*, y \rangle + F(y) \ge 0 \text{ for } y \in K,$$

considered in [11].

5. There are also other special cases in [3, 4, 7-10].

There have been many reseaches on variational inequality problems and their corresponding complementarity problems, for examples, see [4, 7, 8, 11]. In this work, we aim to derive some existence results for weak and strong solutions of (GF-IMVIP) and corresponding results to (GF-IMCP).

The following theorems are essential for our researches.

Berge Theorem ([1]). Let X, Y be topological spaces, $\phi : X \times Y \to \mathbb{R}$ be an upper semicontinuous function and $A : X \to 2^Y$ be an upper semicontinuous mapping with nonempty compact values. Then a function M defined by $M(x) = \max_{s \in A(x)} \phi(x, s)$ is upper semicontinuous on X.

Fan's Lemma ([2]). Let K be a nonempty subset of a Hausdorff topological vector space X. Let $G: K \to 2^X$ be a KKM mapping such that for any $y \in K$, G(y) is closed and $G(y^*)$ is compact for some $y^* \in K$. Then there exists $x^* \in K$ such that $x^* \in G(y)$ for all $y \in K$.

2. (GF-IMVIP)

Now, we consider the existence results of solutions for (GF-IMVIP).

Theorem 2.1. Let a function $F: K \to \mathbb{R}$ be lower semicontinuous, a mapping $g: K \to K$ be continuous and $A, T: K \to 2^{X^*}$ be upper semicontinuous mappings with nonempty compact values. Let a mapping $N: X^* \times X^* \to X^*$ and a function $h: K \times K \to \mathbb{R}$ be given. Suppose that

- (1) $h(x,x) \ge 0$ for all $x \in K$,
- (2) for each $x \in K$, there are $s \in A(x)$ and $t \in T(x)$ such that for all $y \in K$,

$$h(x,y) - \langle N(s,t), g(y) - g(x) \rangle \leq F(g(y)) - F(g(x)),$$

- (3) for each $x \in K$, the set $\{y \in K : h(x, y) < 0\}$ is convex,
- (4) there is a nonempty compact convex subset C of K such that for every $x \in K \setminus C$, there is $y \in C$ such that for some $s \in A(x)$, $t \in T(x)$,

$$\langle N(s,t), g(y) - g(x) \rangle < F(g(x)) - F(g(y)).$$

Then there exists $x^* \in K$ which is a solution of (GF-IMVIP). Furthermore, the solution set of (GF-IMVIP) is compact.

Proof. Define $\Omega: K \to 2^C$ by

$$\Omega(y) = \left\{ x \in C : \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(y) - g(x) \rangle \ge F(g(x)) - F(g(y)) \right\}$$

for all $y \in K$. By the Berge Theorem, we know that the function

$$x \mapsto \max_{s \in A(x), \ t \in T(x)} \langle N(s,t), \ g(y) - g(x) \rangle - F(g(x)) + F(g(y))$$

is upper semicontinuous on K. Hence the set

$$\left\{x \in K : \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(y) - g(x) \rangle \ge F(g(x)) - F(g(y))\right\}$$

is closed in K and for each $y \in K$, the set

$$\Omega(y) = \left\{ x \in C : \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(y) - g(x) \rangle \ge F(g(x)) - F(g(y)) \right\}$$

is compact in C due to the compactness of C.

Next, we claim that a family $\{\Omega(y) : y \in K\}$ has the finite intersection property, then the whole intersection $\bigcap_{y \in K} \Omega(y)$ is nonempty and any element in

the intersection $\bigcap_{y \in K} \Omega(y)$ is a solution of (GF-IMVIP). For any given nonempty finite subset L of K, let $C_L = Co(C \cup L)$, the convex hull of $C \cup L$. Then C_L is a compact convex subset of K. Define mappings $P, Q : C_L \to 2^{C_L}$, respectively, by

$$P(y) = \left\{ x \in C_L : \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(y) - g(x) \rangle \ge F(g(x)) - F(g(y)) \right\}$$

and

$$Q(y) = \left\{ x \in C_L : h(x, y) \ge 0 \right\} \text{ for } y \in C_L.$$

It is obvious that $y \in P(y)$ for $y \in C_L$. Indeed,

$$0 = \langle N(s,t), g(y) - g(y) \rangle \ge F(g(y)) - F(g(y)) = 0$$

for all $s \in A(x), t \in T(x)$.

It is easily shown that Q has closed set-values in C_L . Since for each $y \in C_L$, $\Omega(y) = P(y) \cap C$, if we prove that the whole intersection of the family $\{P(y) : y \in C_L\}$ is nonempty, then we can deduce that the family $\{\Omega(y) : y \in K\}$ has the finite intersection property from the fact that $L \subset C_L$ and condition (4). In order to deduce the conclusions of our theorem, we apply Fan's lemma by showing that P is a KKM mapping. Indeed, if P is not a KKM mapping, then Q is also not from the fact that $Q(y) \subset P(y)$ for each $y \in C_L$ by condition (2). Then there is a nonempty finite subset M of C_L such that

$$Co M \not\subset \bigcup_{u \in M} Q(u).$$

Thus there is an element $u^* \in \operatorname{Co} M \subset C_L$ such that $u^* \notin Q(u)$ for all $u \in M$, that is, $h(u^*, u) < 0$ for all $u \in M$. By condition (3), we have

$$u^* \in \text{Co} M \subset \{u \in K : h(u^*, u) < 0\}$$

and hence $h(u^*, u^*) < 0$, which contradicts condition (1). Hence Q is a KKMmapping and so is P. Therefore there exists $x^* \in K$, which is a solution of (GF-IMVIP).

Finally, to see that the solution set of (GF-IMVIP) is compact, it is sufficient to show that the solution set is closed, due to the coercivity condition (4). To this end, let *B* denote the solution set of (GF-IMVIP). Suppose that $\langle x_n \rangle$ is a sequence in *B* converging to some *u*. Fix any $x \in K$. For each *n*, there are $s_n \in A(x_n), t_n \in T(x_n)$ such that

$$\langle N(s_n, t_n), g(x) - g(x_n) \rangle \geq F(g(x_n)) - F(g(x)).$$

$$(2.1)$$

Since T is an upper semicontinuous mapping with compact set-values and the set $\{x_n : n \in \mathbb{N}\} \cup \{u\}$ is compact, it follows that $T(\{x_n : n \in \mathbb{N}\} \cup \{u\})$ is compact [1]. Therefore without loss of generality, we may assume that the sequences $\langle s_n \rangle$ and $\langle t_n \rangle$ converge to some s and t, respectively. Then $s \in A(u)$, $t \in T(u)$ and by taking the limitinf in (2.1), we obtain

$$\langle N(s,t), g(x) - g(u) \rangle \ge F(g(u)) - F(g(x)).$$

Hence $u \in B$, which shows that B is closed.

Remark 2.1. If $A \equiv 0$, $N: X^* \to X^*$ is an identity and g(x) = x for all $x \in K$, then Theorem 2.1 reduces to Theorem 2.1 in [11]. Moreover, if T is single valued and X is a Banach space, then Theorem 2.1 reduces to Theorem 3.2 in [5].

Theorem 2.2. Under the assumptions of Theorem 2.1 if, in addition, F is convex and $A(x^*)$, $T(x^*)$ are convex, then x^* is a strong solution of (GF-IMVIP), that is, there exists $s^* \in A(x^*)$, $t^* \in T(x^*)$ such that

$$\langle N(s^*, t^*), g(x) - g(x^*) \rangle \geq F(g(x^*)) - F(g(x))$$

for all $x \in K$. Furthermore, the set of all strong solutions of (GF-IMVIP) is compact.

Proof. For $x^* \in K$ satisfying (1.1), since $A(x^*)$ and $T(x^*)$ are compact, the supremum is attained. That is,

$$\max_{\substack{\in A(x^*), t \in T(x^*)}} \langle N(s,t), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x))$$

for all $x \in K$. Since $A(x^*)$, $T(x^*)$ are convex, by Kneser's minimax theorem [6] we have

$$\max_{s \in A(x^*), t \in T(x^*)} \inf_{x \in K} \langle N(s,t), g(x) - g(x^*) \rangle - F(g(x^*)) + F(g(x))$$

= inf max $\langle N(s,t), g(x) - g(x^*) \rangle - F(g(x^*)) + F(g(x)) >$

$$= \inf_{x \in K} \max_{s \in A(x^*), t \in T(x^*)} \langle N(s, t), g(x) - g(x^*) \rangle - F(g(x^*)) + F(g(x)) \ge 0.$$

Therefore, there exists $s^* \in A(x^*)$, $t^* \in T(x^*)$ such that

$$\langle N(s^*, t^*), g(x) - g(x^*) \rangle \geq F(g(x^*)) - F(g(x))$$

for all $x \in K$. Hence x^* is a strong solution of (GF-IMVIP). By the same argument shown in the proof of Theorem 2.1, the set of all strong solutions is compact.

Remark 2.2. If $A \equiv 0$, N is an identity and g(x) = x for all $x \in K$, then Theorem 2.2 reduces to Theorem 3.2 in [11]. Moreover, if T is single valued X is a Banach space, then Theorem 2.2 reduces to Theorem 3.4 in [5].

Theorem 2.3. Let $F : K \to \mathbb{R}$ be convex and lower semicontinuous on any nonempty compact set, and $g : K \to K$ and $N : X^* \times X^* \to X^*$ be continuous. Let mappings $A, T : K \to 2^{X^*}$ be upper semicontinuous and have nonempty compact set-values. If

(1) for each $x \in K$, there are $s \in A(x)$, $t \in T(x)$ such that for all $y \in K$

$$\langle N(s,t), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \geq 0$$

(2) there is a nonempty compact convex subset C of K such that for every $x \in K \setminus C$, there is a $y \in C$ such that for some $s \in A(x)$, $t \in T(x)$

$$\langle N(s,t), g(y) - g(x) \rangle < F(g(x)) - F(g(y)).$$

Then there exists an $x^* \in K$ which is a solution of (GF-IMVIP). Furthermore, the solution set of (GF-IMVIP) is compact. If in addition, $A(x^*)$, $T(x^*)$ are also convex, then x^* is a strong solution of (GF-IMVIP).

Proof. For a nonempty finite subset L of K, let $C_L = Co(C \cup L)$, then C_L is a nonempty compact convex subset of K. Define $P: C_L \to 2^{C_L}$ as

$$P(y) = \left\{ x \in C_L : \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(y) - g(x) \rangle \ge F(g(x)) - F(g(y)) \right\}$$

and for each $y \in K$, let

$$\Omega(y) = \Big\{ x \in C : \max_{s \in A(x), t \in T(x)} \langle N(s, t), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \ge 0 \Big\}.$$

For each $x \in K$, P(x) is nonempty by condition (1). By the Berge Theorem, we know that for each $y \in C_L$, P(y) is closed in C_L and for each $y \in K$, $\Omega(y)$ is compact in C. Next we claim that P is a KKM-mapping. Indeed, if not, there is a nonempty finite subset M of C_L such that $\operatorname{Co} M \not\subset \bigcup_{X} P(x)$. Then

there is an $x^* \in \operatorname{Co} M \subset C_L$ such that

$$\max_{s \in A(x^*), t \in T(x^*)} \langle N(s,t), g(x) - g(x^*) \rangle < F(g(x^*)) - F(g(x)), \text{ for all } x \in M.$$

Since F is convex, the mapping

$$x \mapsto \max_{s \in A(x), t \in T(x)} \langle N(s,t), g(x) - g(x^*) \rangle + F(g(x))$$

is quasiconvex on C_L . Hence we can deduce that

$$\max_{s \in A(x^*), \ t \in T(x^*)} \langle N(s,t), \ g(x^*) - g(x^*) \rangle < F(g(x^*)) - F(g(x^*)),$$

which contradicts condition (1). Therefore P is a KKM mapping and by Fan's lemma we have $\bigcap_{x \in C_L} P(x) \neq \emptyset$. Let

$$u \in \bigcap_{x \in C_L} P(x)$$

then $u \in C$ by condition (2). Hence we have

$$\bigcap_{y\in L}\Omega(y) \ = \ \bigcap_{y\in L}P(y)\cap C \ \neq \ \emptyset,$$

for any nonempty finite subset L of K. Therefore, the whole intersection $\bigcap_{y \in K} \Omega(y)$ is nonempty. Let $x^* \in \bigcap_{y \in K} \Omega(y)$. Then x^* is a solution of (GF-IMVIP). Since C is compact, the solution set of (GF-IMVIP) is compact. Finally, if $T(x^*)$ is also convex, then by the same argument shown in the proof of Theorem 2.2, we can prove that x^* is a strong solution of (GF-IMVIP). \Box

376

3. (GF-IMCP)

We first establish the equivalence between strong solutions of (GF-IMVIP) and solutions of (GF-IMCP) on a closed convex cone K in X. The set K is assumed to be a closed convex cone in X.

Theorem 3.1. (i) If x^* solves (GF-IMCP), then x^* is a strong solution of (GF-IMVIP);

 (ii) If F: K→ ℝ is a positive homogeneous and convex function and x* is a strong solution of (GF-IMVIP), then x* solves (GF-IMCP).

Proof. Let x^* solve (GF-IMCP), then for $x^* \in K$, $s^* \in A(x^*)$ and $t^* \in T(x^*)$, we have

$$\langle N(s^*, t^*), g(x^*) \rangle + F(g(x^*)) = 0$$

and

$$\langle N(s^*, t^*), g(x) \rangle + F(g(x)) \ge 0 \text{ for } x \in K.$$

Hence

$$\langle N(s^*, t^*), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x))$$
 for $x \in K$.

Thus x^* is a strong solution of (GF-IMVIP).

(ii) Let x^* be a strong solution of (GF-IMVIP) then there exist $s^* \in A(x^*)$, $t^* \in T(x^*)$ such that

$$\langle N(s^*, t^*), g(x) - g(x^*) \rangle \ge F(g(x^*)) - F(g(x))$$
 for $x \in K$. (3.1)

Since $F: K \to \mathbb{R}$ is a positive homogeneous and convex function and set K is a closed convex cone in X, substituting $g(x) = 2g(x^*)$ and $g(x) = \frac{1}{2}g(x^*)$ in (3.1), we obtain

.

$$\langle N(s^*,t^*), g(x^*) \rangle \geq -F(g(x^*))$$

and

$$\langle N(s^*, t^*), g(x^*) \rangle \leq -F(g(x^*)),$$

which implies that

$$\langle N(s^*, t^*), g(x^*) \rangle + F(g(x^*)) = 0.$$
 (3.2)

Combining (3.1) and (3.2), we have

$$\langle N(s^*, t^*), g(x) \rangle + F(g(x)) \ge 0 \text{ for } x \in K.$$

Hence x^* is a solution of (GF-IMCP).

Remark 3.1. If $T \equiv 0$, N is an indentity and g(y) = y for $y \in K$, then Theorem 3.1 reduces to Theorem 3.1 considered in [11]. Moreover, if A is single-valued and X is a Banach space, then we obtain Theorem 3.1 considered in [5].

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. In addition, if $F : K \to \mathbb{R}$ is a positive homogeneous and convex function and A, T have convex set-values, then (GF-IMCP) has a solution. Furthermore the solution set is compact.

Proof. Applying Theorems 2.2 and 3.1, we obtain the conclusion.

Similarly by combining Theorems 2.3 and 3.1, we have the following result.

Theorem 3.3. Let the assumptions of Theorem 2.3 hold. In addition, if $F : K \to \mathbb{R}$ is a positive homogeneous function and A, T have convex set-values, then (GF-IMCP) has a solution. Furthermore the solution set is compact.

Remark 3.2. If $A \equiv 0$, N is an identity and g(x) = x for all $x \in K$, then Theorem 3.3 reduces to Theorem 3.3 in [11]. Moreover, if T is single-valued and X is a Banach space, then Theorem 3.3 reduces to Theorem 3.3 in [5].

References

- [1] C. Berge, *Espaces Topologique*, fonctions, multivoques, Dunod, Paris, 1959.
- [2] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305–310.
- [3] S. C. Fang and E. L. Peterson, Generalized variational inequalities, J. Optim. Theory Appl. 38 (1982), 363–383.
- [4] P. T. Harkar and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory algorithms and applications, Math. Program 48 B (1990), 161–220.
- [5] N. J. Huang and J. Li, F-implicit complementarity problems in Banach spaces, ZAA 23(2) (2004), 293–302.
- [6] H. Kneser, Sur un theoreme fondamantal de la theorie des Jeux, C.R. Acad. Sci. Paris 234 (1952), 2418–2420.
- [7] B. S. Lee, M. Firdosh Khan and Salahuddin, Vector F-implicit complementarity problems with corresponding variational inequality problem, Appl. Math. Lett. 20 (2007), 433–438.
- [8] J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), 73–81.
- [9] G. Stampacchia, Forms bilineaires sur les ensemble convexes, C. R. Acad. Sci. Paris 258 (1964), 4413–4416.
- [10] J. C. Yao and J. S. Guo, Variational and generalized variational inequalities with discontinuous mappings, J. Math. Anal. Appl. 182 (1994), 371–392.
- [11] L. C. Zeng, Y. C. Lin and J. C. Yao, On weak and strong solutions of F-implicit generalized variational inequalities with applications, Appl. Math. Lett. 19 (2006), 684– 689.

Byung-Soo Lee Department of Mathematics Kyungsung University Busan 608-736 *E-mail address*: bslee@ks.ac.kr

M. FIRDOSH KHAN S. S. SCHOOL (BOYS) ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address*: khan_mfk@yahoo.com

SALAHUDDIN DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address:* salahuddin12@mailcity.com