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GENERALIZED F -IMPLICIT MULTIVALUED VARIATIONAL
INEQUALITY PROBLEMS AND COMPLEMENTARITY

PROBLEMS

Byung-Soo Lee∗, M. Firdosh Khan, and Salahuddin

Abstract. In this paper, we study generalized F -implicit multivalued

variational inequality problems on a real normed vector space setting. As
an application, we study generalized F -implicit multivalued complemen-

tarity problems.

1. Preliminaries

Let X be a real normed vector space with a dual space X∗ and 〈·, ·〉 be
the dual pair of X∗ and X. Let X and X∗ be endowed with their respective
norm topologies. Let K be a nonempty closed convex subset of X. A function
F : K → R and mappings g : K → K, T , A : K → 2X∗

are assumed to be
given. The generalized F -implicit multivalued variational inequality problem
(in short, GF-IMVIP) is finding an x∗ ∈ K such that

sup
s∈A(x∗), t∈T (x∗)

〈N(s, t), g(x)− g(x∗)〉 ≥ F (g(x∗))−F (g(x)) for x ∈ K, (1.1)

where N : X∗ ×X∗ → X∗ be a mapping.
A solution of (1.1) is called a weak solution in the sense that if A and T

have compact set-values, then for each x ∈ K there are s ∈ A(x∗), t ∈ T (x∗)
(depending on x) such that

〈N(s, t), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x)).

In contrast, we say that x∗ is a strong solution of (1.1) if there exist s∗ ∈ A(x∗),
t∗ ∈ T (x∗) such that

〈N(s∗, t∗), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x)) for x ∈ K.

Received May 14, 2009; Accepted April 12, 2010.
2000 Mathematics Subject Classification. 49J40, 47H19.
Key words and phrases. generalized F -implicit multivalued variational inequality prob-

lem, generalized F -implicit multivalued complementarity problem, strong solution, weak
solution.

* corresponding author.

c©2010 The Youngnam Mathematical Society

371



372 BYUNG-SOO LEE, M. FIRDOSH KHAN, AND SALAHUDDIN

The following generalized F -implicit multivalued complementarity problem
(GF-IMCP) corresponding to (GF-IMVIP) is also considered as an applica-
tions:

Find x∗ ∈ K, s∗ ∈ A(x∗) and t∗ ∈ T (x∗) such that

〈N(s∗, t∗), g(x∗)〉+ F (g(x∗)) = 0

and
〈N(s∗, t∗), g(y)〉+ F (g(y)) ≥ 0 for y ∈ K.

Remark 1.1. The following are some special cases of (GF-IMVIP) and (GF-
IMCP).

1. If T ≡ 0, then (1.1) is equivalent to finding x∗ ∈ K and s ∈ A(x∗) such
that

sup
s∈A(x∗)

〈N(s,N(s)), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x)) for x ∈ K, (1.2)

where N : X∗ → X∗ is a mapping.
2. If N is an identity mapping and g(x) = x, then (1.2) is collapse to the

problem of finding x∗ ∈ K, s ∈ A(x∗) such that

sup
s∈A(x∗)

〈s, x− g(x∗)〉 ≥ F (g(x∗))− F (x) for x ∈ K, (1.3)

introduced by Zeng et al. [11].
3. If A is single valued, then (1.3) is equivalent to finding x∗ ∈ K such

that

〈T (x∗), x− g(x∗)〉 ≥ F (g(x∗))− F (x) for x ∈ K,

introduced and studied by Huang and Li [5] in a Banach space setting.
4. If T ≡ 0, N is an indentity and g(y) = y for y ∈ K, then (GF-IMCP)

reduces to finding x∗ ∈ K and s∗ ∈ A(x∗) such that

〈s∗, g(x∗)〉+ F (g(x∗)) = 0

and
〈s∗, y〉+ F (y) ≥ 0 for y ∈ K,

considered in [11].
5. There are also other special cases in [3, 4, 7-10].

There have been many reseaches on variational inequality problems and their
corresponding complementarity problems, for examples, see [4, 7, 8, 11]. In this
work, we aim to derive some existence results for weak and strong solutions of
(GF-IMVIP) and corresponding results to (GF-IMCP).

The following theorems are essential for our researches.

Berge Theorem ([1]). Let X, Y be topological spaces, φ : X × Y → R be
an upper semicontinuous function and A : X → 2Y be an upper semicontin-
uous mapping with nonempty compact values. Then a function M defined by
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M(x) = max
s∈A(x)

φ(x, s) is upper semicontinuous on X.

Fan’s Lemma ([2]). Let K be a nonempty subset of a Hausdorff topological
vector space X. Let G : K → 2X be a KKM mapping such that for any y ∈ K,
G(y) is closed and G(y∗) is compact for some y∗ ∈ K. Then there exists
x∗ ∈ K such that x∗ ∈ G(y) for all y ∈ K.

2. (GF-IMVIP)

Now, we consider the existence results of solutions for (GF-IMVIP).

Theorem 2.1. Let a function F : K → R be lower semicontinuous, a mapping
g : K → K be continuous and A, T : K → 2X∗

be upper semicontinuous
mappings with nonempty compact values. Let a mapping N : X∗ ×X∗ → X∗

and a function h : K ×K → R be given. Suppose that
(1) h(x, x) ≥ 0 for all x ∈ K,
(2) for each x ∈ K, there are s ∈ A(x) and t ∈ T (x) such that for all

y ∈ K,

h(x, y)− 〈N(s, t), g(y)− g(x)〉 ≤ F (g(y))− F (g(x)),

(3) for each x ∈ K, the set {y ∈ K : h(x, y) < 0} is convex,
(4) there is a nonempty compact convex subset C of K such that for every

x ∈ K\C, there is y ∈ C such that for some s ∈ A(x), t ∈ T (x),

〈N(s, t), g(y)− g(x)〉 < F (g(x))− F (g(y)).

Then there exists x∗ ∈ K which is a solution of (GF-IMVIP).
Furthermore, the solution set of (GF-IMVIP) is compact.

Proof. Define Ω : K → 2C by

Ω(y) =
{
x ∈ C : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉 ≥ F (g(x))− F (g(y))

}
for all y ∈ K. By the Berge Theorem, we know that the function

x 7→ max
s∈A(x), t∈T (x)

〈N(s, t), g(y)− g(x)〉 − F (g(x)) + F (g(y))

is upper semicontinuous on K. Hence the set{
x ∈ K : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉 ≥ F (g(x))− F (g(y))

}
is closed in K and for each y ∈ K, the set

Ω(y) =
{
x ∈ C : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉 ≥ F (g(x))− F (g(y))

}
is compact in C due to the compactness of C.

Next, we claim that a family {Ω(y) : y ∈ K} has the finite intersection
property, then the whole intersection

⋂
y∈K

Ω(y) is nonempty and any element in
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the intersection
⋂

y∈K

Ω(y) is a solution of (GF-IMVIP). For any given nonempty

finite subset L of K, let CL = Co(C ∪L), the convex hull of C ∪L. Then CL is
a compact convex subset of K. Define mappings P,Q : CL → 2CL , respectively,
by

P (y) =
{
x ∈ CL : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉 ≥ F (g(x))− F (g(y))

}
and

Q(y) =
{
x ∈ CL : h(x, y) ≥ 0

}
for y ∈ CL.

It is obvious that y ∈ P (y) for y ∈ CL. Indeed,

0 = 〈N(s, t), g(y)− g(y)〉 ≥ F (g(y))− F (g(y)) = 0

for all s ∈ A(x), t ∈ T (x).
It is easily shown that Q has closed set-values in CL. Since for each y ∈ CL,

Ω(y) = P (y) ∩ C, if we prove that the whole intersection of the family {P (y) :
y ∈ CL} is nonempty, then we can deduce that the family {Ω(y) : y ∈ K} has
the finite intersection property from the fact that L ⊂ CL and condition (4).
In order to deduce the conclusions of our theorem, we apply Fan’s lemma by
showing that P is a KKM mapping. Indeed, if P is not a KKM mapping, then
Q is also not from the fact that Q(y) ⊂ P (y) for each y ∈ CL by condition (2).
Then there is a nonempty finite subset M of CL such that

CoM 6⊂
⋃

u∈M

Q(u).

Thus there is an element u∗ ∈ CoM ⊂ CL such that u∗ 6∈ Q(u) for all
u ∈M , that is, h(u∗, u) < 0 for all u ∈M . By condition (3), we have

u∗ ∈ CoM ⊂ {u ∈ K : h(u∗, u) < 0}
and hence h(u∗, u∗) < 0, which contradicts condition (1). Hence Q is a KKM-
mapping and so is P . Therefore there exists x∗ ∈ K, which is a solution of
(GF-IMVIP).

Finally, to see that the solution set of (GF-IMVIP) is compact, it is sufficient
to show that the solution set is closed, due to the coercivity condition (4). To
this end, let B denote the solution set of (GF-IMVIP). Suppose that 〈xn〉 is
a sequence in B converging to some u. Fix any x ∈ K. For each n, there are
sn ∈ A(xn), tn ∈ T (xn) such that

〈N(sn, tn), g(x)− g(xn)〉 ≥ F (g(xn))− F (g(x)). (2.1)

Since T is an upper semicontinuous mapping with compact set-values and
the set {xn : n ∈ N} ∪ {u} is compact, it follows that T ({xn : n ∈ N} ∪ {u})
is compact [1]. Therefore without loss of generality, we may assume that the
sequences 〈sn〉 and 〈tn〉 converge to some s and t, respectively. Then s ∈ A(u),
t ∈ T (u) and by taking the limitinf in (2.1), we obtain

〈N(s, t), g(x)− g(u)〉 ≥ F (g(u))− F (g(x)).
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Hence u ∈ B, which shows that B is closed. �

Remark 2.1. If A ≡ 0, N : X∗ → X∗ is an identity and g(x) = x for all x ∈ K,
then Theorem 2.1 reduces to Theorem 2.1 in [11]. Moreover, if T is single
valued and X is a Banach space, then Theorem 2.1 reduces to Theorem 3.2 in
[5].

Theorem 2.2. Under the assumptions of Theorem 2.1 if, in addition, F is
convex and A(x∗), T (x∗) are convex, then x∗ is a strong solution of (GF-
IMVIP), that is, there exists s∗ ∈ A(x∗), t∗ ∈ T (x∗) such that

〈N(s∗, t∗), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x))

for all x ∈ K. Furthermore, the set of all strong solutions of (GF-IMVIP) is
compact.

Proof. For x∗ ∈ K satisfying (1.1), since A(x∗) and T (x∗) are compact, the
supremum is attained. That is,

max
s∈A(x∗), t∈T (x∗)

〈N(s, t), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x))

for all x ∈ K. Since A(x∗), T (x∗) are convex, by Kneser’s minimax theorem
[6] we have

max
s∈A(x∗), t∈T (x∗)

inf
x∈K
〈N(s, t), g(x)−g(x∗)〉−F (g(x∗))+F (g(x))

= inf
x∈K

max
s∈A(x∗), t∈T (x∗)

〈N(s, t), g(x)− g(x∗)〉 − F (g(x∗)) + F (g(x)) ≥ 0.

Therefore, there exists s∗ ∈ A(x∗), t∗ ∈ T (x∗) such that

〈N(s∗, t∗), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x))

for all x ∈ K. Hence x∗ is a strong solution of (GF-IMVIP). By the same
argument shown in the proof of Theorem 2.1, the set of all strong solutions is
compact. �

Remark 2.2. If A ≡ 0, N is an identity and g(x) = x for all x ∈ K, then
Theorem 2.2 reduces to Theorem 3.2 in [11]. Moreover, if T is single valued X
is a Banach space, then Theorem 2.2 reduces to Theorem 3.4 in [5].

Theorem 2.3. Let F : K → R be convex and lower semicontinuous on any
nonempty compact set, and g : K → K and N : X∗×X∗ → X∗ be continuous.
Let mappings A, T : K → 2X∗

be upper semicontinuous and have nonempty
compact set-values. If

(1) for each x ∈ K, there are s ∈ A(x), t ∈ T (x) such that for all y ∈ K
〈N(s, t), g(y)− g(x)〉+ F (g(y))− F (g(x)) ≥ 0,

(2) there is a nonempty compact convex subset C of K such that for every
x ∈ K\C, there is a y ∈ C such that for some s ∈ A(x), t ∈ T (x)

〈N(s, t), g(y)− g(x)〉 < F (g(x))− F (g(y)).
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Then there exists an x∗ ∈ K which is a solution of (GF-IMVIP). Furthermore,
the solution set of (GF-IMVIP) is compact. If in addition, A(x∗), T (x∗) are
also convex, then x∗ is a strong solution of (GF-IMVIP).

Proof. For a nonempty finite subset L of K, let CL = Co(C ∪ L), then CL is
a nonempty compact convex subset of K. Define P : CL → 2CL as

P (y) =
{
x ∈ CL : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉 ≥ F (g(x))− F (g(y))

}
and for each y ∈ K, let

Ω(y) =
{
x ∈ C : max

s∈A(x), t∈T (x)
〈N(s, t), g(y)− g(x)〉+F (g(y))−F (g(x)) ≥ 0

}
.

For each x ∈ K, P (x) is nonempty by condition (1). By the Berge Theorem,
we know that for each y ∈ CL, P (y) is closed in CL and for each y ∈ K, Ω(y)
is compact in C. Next we claim that P is a KKM-mapping. Indeed, if not,
there is a nonempty finite subset M of CL such that CoM 6⊂

⋃
x∈M

P (x). Then

there is an x∗ ∈ CoM ⊂ CL such that

max
s∈A(x∗), t∈T (x∗)

〈N(s, t), g(x)− g(x∗)〉 < F (g(x∗))− F (g(x)), for all x ∈M.

Since F is convex, the mapping

x 7→ max
s∈A(x), t∈T (x)

〈N(s, t), g(x)− g(x∗)〉+ F (g(x))

is quasiconvex on CL. Hence we can deduce that

max
s∈A(x∗), t∈T (x∗)

〈N(s, t), g(x∗)− g(x∗)〉 < F (g(x∗))− F (g(x∗)),

which contradicts condition (1). Therefore P is a KKM mapping and by Fan’s
lemma we have

⋂
x∈CL

P (x) 6= ∅. Let

u ∈
⋂

x∈CL

P (x),

then u ∈ C by condition (2). Hence we have⋂
y∈L

Ω(y) =
⋂
y∈L

P (y) ∩ C 6= ∅,

for any nonempty finite subset L of K. Therefore, the whole intersection⋂
y∈K

Ω(y) is nonempty. Let x∗ ∈
⋂

y∈K

Ω(y). Then x∗ is a solution of (GF-

IMVIP). Since C is compact, the solution set of (GF-IMVIP) is compact. Fi-
nally, if T (x∗) is also convex, then by the same argument shown in the proof
of Theorem 2.2, we can prove that x∗ is a strong solution of (GF-IMVIP). �
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3. (GF-IMCP)

We first establish the equivalence between strong solutions of (GF-IMVIP)
and solutions of (GF-IMCP) on a closed convex cone K in X. The set K is
assumed to be a closed convex cone in X.

Theorem 3.1. (i) If x∗ solves (GF-IMCP), then x∗ is a strong solution
of (GF-IMVIP);

(ii) If F : K → R is a positive homogeneous and convex function and x∗ is
a strong solution of (GF-IMVIP), then x∗ solves (GF-IMCP).

Proof. Let x∗ solve (GF-IMCP), then for x∗ ∈ K, s∗ ∈ A(x∗) and t∗ ∈ T (x∗),
we have

〈N(s∗, t∗), g(x∗)〉+ F (g(x∗)) = 0
and

〈N(s∗, t∗), g(x)〉+ F (g(x)) ≥ 0 for x ∈ K.
Hence

〈N(s∗, t∗), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x)) for x ∈ K.
Thus x∗ is a strong solution of (GF-IMVIP).

(ii) Let x∗ be a strong solution of (GF-IMVIP) then there exist s∗ ∈ A(x∗),
t∗ ∈ T (x∗) such that

〈N(s∗, t∗), g(x)− g(x∗)〉 ≥ F (g(x∗))− F (g(x)) for x ∈ K. (3.1)

Since F : K → R is a positive homogeneous and convex function and set K

is a closed convex cone in X, substituting g(x) = 2g(x∗) and g(x) =
1
2
g(x∗) in

(3.1), we obtain
〈N(s∗, t∗), g(x∗)〉 ≥ −F (g(x∗))

and
〈N(s∗, t∗), g(x∗)〉 ≤ −F (g(x∗)),

which implies that
〈N(s∗, t∗), g(x∗)〉+ F (g(x∗)) = 0. (3.2)

Combining (3.1) and (3.2), we have

〈N(s∗, t∗), g(x)〉+ F (g(x)) ≥ 0 for x ∈ K.
Hence x∗ is a solution of (GF-IMCP). �

Remark 3.1. If T ≡ 0, N is an indentity and g(y) = y for y ∈ K, then Theorem
3.1 reduces to Theorem 3.1 considered in [11]. Moreover, if A is single-valued
and X is a Banach space, then we obtain Theorem 3.1 considered in [5].

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. In addition, if F :
K → R is a positive homogeneous and convex function and A, T have convex
set-values, then (GF-IMCP) has a solution. Furthermore the solution set is
compact.

Proof. Applying Theorems 2.2 and 3.1, we obtain the conclusion. �
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Similarly by combining Theorems 2.3 and 3.1, we have the following result.

Theorem 3.3. Let the assumptions of Theorem 2.3 hold. In addition, if F :
K → R is a positive homogeneous function and A, T have convex set-values,
then (GF-IMCP) has a solution. Furthermore the solution set is compact.

Remark 3.2. If A ≡ 0, N is an identity and g(x) = x for all x ∈ K, then
Theorem 3.3 reduces to Theorem 3.3 in [11]. Moreover, if T is single-valued
and X is a Banach space, then Theorem 3.3 reduces to Theorem 3.3 in [5].
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