GENERALIZED F-IMPLICIT MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS AND COMPLEMENTARITY PROBLEMS

Byung-Soo Lee*, M. Firdosh Khan, and Salahuddin

Abstract

In this paper, we study generalized F-implicit multivalued variational inequality problems on a real normed vector space setting. As an application, we study generalized F-implicit multivalued complementarity problems.

1. Preliminaries

Let X be a real normed vector space with a dual space X^{*} and $\langle\cdot, \cdot\rangle$ be the dual pair of X^{*} and X. Let X and X^{*} be endowed with their respective norm topologies. Let K be a nonempty closed convex subset of X. A function $F: K \rightarrow \mathbb{R}$ and mappings $g: K \rightarrow K, T, A: K \rightarrow 2^{X^{*}}$ are assumed to be given. The generalized F-implicit multivalued variational inequality problem (in short, GF-IMVIP) is finding an $x^{*} \in K$ such that

$$
\sup _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) \text { for } x \in K, \text { (1.1) }
$$

where $N: X^{*} \times X^{*} \rightarrow X^{*}$ be a mapping.
A solution of (1.1) is called a weak solution in the sense that if A and T have compact set-values, then for each $x \in K$ there are $s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)$ (depending on x) such that

$$
\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) .
$$

In contrast, we say that x^{*} is a strong solution of (1.1) if there exist $s^{*} \in A\left(x^{*}\right)$, $t^{*} \in T\left(x^{*}\right)$ such that

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) \text { for } x \in K .
$$

[^0]The following generalized F-implicit multivalued complementarity problem (GF-IMCP) corresponding to (GF-IMVIP) is also considered as an applications:

Find $x^{*} \in K, s^{*} \in A\left(x^{*}\right)$ and $t^{*} \in T\left(x^{*}\right)$ such that

$$
\left\langle N\left(s^{*}, t^{*}\right), g\left(x^{*}\right)\right\rangle+F\left(g\left(x^{*}\right)\right)=0
$$

and

$$
\left\langle N\left(s^{*}, t^{*}\right), g(y)\right\rangle+F(g(y)) \geq 0 \text { for } y \in K .
$$

Remark 1.1. The following are some special cases of (GF-IMVIP) and (GFIMCP).

1. If $T \equiv 0$, then (1.1) is equivalent to finding $x^{*} \in K$ and $s \in A\left(x^{*}\right)$ such that

$$
\begin{equation*}
\sup _{s \in A\left(x^{*}\right)}\left\langle N(s, N(s)), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) \text { for } x \in K \tag{1.2}
\end{equation*}
$$

where $N: X^{*} \rightarrow X^{*}$ is a mapping.
2. If N is an identity mapping and $g(x)=x$, then (1.2) is collapse to the problem of finding $x^{*} \in K, s \in A\left(x^{*}\right)$ such that

$$
\begin{equation*}
\sup _{s \in A\left(x^{*}\right)}\left\langle s, x-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(x) \text { for } x \in K \tag{1.3}
\end{equation*}
$$

introduced by Zeng et al. [11].
3. If A is single valued, then (1.3) is equivalent to finding $x^{*} \in K$ such that

$$
\left\langle T\left(x^{*}\right), x-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(x) \text { for } x \in K
$$

introduced and studied by Huang and Li [5] in a Banach space setting.
4. If $T \equiv 0, N$ is an indentity and $g(y)=y$ for $y \in K$, then (GF-IMCP) reduces to finding $x^{*} \in K$ and $s^{*} \in A\left(x^{*}\right)$ such that

$$
\left\langle s^{*}, g\left(x^{*}\right)\right\rangle+F\left(g\left(x^{*}\right)\right)=0
$$

and

$$
\left\langle s^{*}, y\right\rangle+F(y) \geq 0 \text { for } y \in K
$$

considered in [11].
5. There are also other special cases in $[3,4,7-10]$.

There have been many reseaches on variational inequality problems and their corresponding complementarity problems, for examples, see [4, 7, 8, 11]. In this work, we aim to derive some existence results for weak and strong solutions of (GF-IMVIP) and corresponding results to (GF-IMCP).

The following theorems are essential for our researches.
Berge Theorem ([1]). Let X, Y be topological spaces, $\phi: X \times Y \rightarrow \mathbb{R}$ be an upper semicontinuous function and $A: X \rightarrow 2^{Y}$ be an upper semicontinuous mapping with nonempty compact values. Then a function M defined by
$M(x)=\max _{s \in A(x)} \phi(x, s)$ is upper semicontinuous on X.
Fan's Lemma ([2]). Let K be a nonempty subset of a Hausdorff topological vector space X. Let $G: K \rightarrow 2^{X}$ be a KKM mapping such that for any $y \in K$, $G(y)$ is closed and $G\left(y^{*}\right)$ is compact for some $y^{*} \in K$. Then there exists $x^{*} \in K$ such that $x^{*} \in G(y)$ for all $y \in K$.

2. (GF-IMVIP)

Now, we consider the existence results of solutions for (GF-IMVIP).
Theorem 2.1. Let a function $F: K \rightarrow \mathbb{R}$ be lower semicontinuous, a mapping $g: K \rightarrow K$ be continuous and $A, T: K \rightarrow 2^{X^{*}}$ be upper semicontinuous mappings with nonempty compact values. Let a mapping $N: X^{*} \times X^{*} \rightarrow X^{*}$ and a function $h: K \times K \rightarrow \mathbb{R}$ be given. Suppose that
(1) $h(x, x) \geq 0$ for all $x \in K$,
(2) for each $x \in K$, there are $s \in A(x)$ and $t \in T(x)$ such that for all $y \in K$,

$$
h(x, y)-\langle N(s, t), g(y)-g(x)\rangle \leq F(g(y))-F(g(x)),
$$

(3) for each $x \in K$, the set $\{y \in K: h(x, y)<0\}$ is convex,
(4) there is a nonempty compact convex subset C of K such that for every $x \in K \backslash C$, there is $y \in C$ such that for some $s \in A(x), t \in T(x)$,

$$
\langle N(s, t), g(y)-g(x)\rangle<F(g(x))-F(g(y)) .
$$

Then there exists $x^{*} \in K$ which is a solution of (GF-IMVIP).
Furthermore, the solution set of (GF-IMVIP) is compact.
Proof. Define $\Omega: K \rightarrow 2^{C}$ by

$$
\Omega(y)=\left\{x \in C: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle \geq F(g(x))-F(g(y))\right\}
$$

for all $y \in K$. By the Berge Theorem, we know that the function

$$
x \mapsto \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle-F(g(x))+F(g(y))
$$

is upper semicontinuous on K. Hence the set

$$
\left\{x \in K: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle \geq F(g(x))-F(g(y))\right\}
$$

is closed in K and for each $y \in K$, the set

$$
\Omega(y)=\left\{x \in C: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle \geq F(g(x))-F(g(y))\right\}
$$

is compact in C due to the compactness of C.
Next, we claim that a family $\{\Omega(y): y \in K\}$ has the finite intersection property, then the whole intersection $\bigcap_{y \in K} \Omega(y)$ is nonempty and any element in
the intersection $\bigcap_{y \in K} \Omega(y)$ is a solution of (GF-IMVIP). For any given nonempty finite subset L of K, let $C_{L}=C o(C \cup L)$, the convex hull of $C \cup L$. Then C_{L} is a compact convex subset of K. Define mappings $P, Q: C_{L} \rightarrow 2^{C_{L}}$, respectively, by

$$
P(y)=\left\{x \in C_{L}: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle \geq F(g(x))-F(g(y))\right\}
$$

and

$$
Q(y)=\left\{x \in C_{L}: h(x, y) \geq 0\right\} \text { for } y \in C_{L}
$$

It is obvious that $y \in P(y)$ for $y \in C_{L}$. Indeed,

$$
0=\langle N(s, t), g(y)-g(y)\rangle \geq F(g(y))-F(g(y))=0
$$

for all $s \in A(x), t \in T(x)$.
It is easily shown that Q has closed set-values in C_{L}. Since for each $y \in C_{L}$, $\Omega(y)=P(y) \cap C$, if we prove that the whole intersection of the family $\{P(y):$ $\left.y \in C_{L}\right\}$ is nonempty, then we can deduce that the family $\{\Omega(y): y \in K\}$ has the finite intersection property from the fact that $L \subset C_{L}$ and condition (4). In order to deduce the conclusions of our theorem, we apply Fan's lemma by showing that P is a KKM mapping. Indeed, if P is not a KKM mapping, then Q is also not from the fact that $Q(y) \subset P(y)$ for each $y \in C_{L}$ by condition (2). Then there is a nonempty finite subset M of C_{L} such that

$$
C o M \not \subset \bigcup_{u \in M} Q(u) .
$$

Thus there is an element $u^{*} \in \operatorname{Co} M \subset C_{L}$ such that $u^{*} \notin Q(u)$ for all $u \in M$, that is, $h\left(u^{*}, u\right)<0$ for all $u \in M$. By condition (3), we have

$$
u^{*} \in \operatorname{Co} M \subset\left\{u \in K: h\left(u^{*}, u\right)<0\right\}
$$

and hence $h\left(u^{*}, u^{*}\right)<0$, which contradicts condition (1). Hence Q is a KKMmapping and so is P. Therefore there exists $x^{*} \in K$, which is a solution of (GF-IMVIP).

Finally, to see that the solution set of (GF-IMVIP) is compact, it is sufficient to show that the solution set is closed, due to the coercivity condition (4). To this end, let B denote the solution set of (GF-IMVIP). Suppose that $\left\langle x_{n}\right\rangle$ is a sequence in B converging to some u. Fix any $x \in K$. For each n, there are $s_{n} \in A\left(x_{n}\right), t_{n} \in T\left(x_{n}\right)$ such that

$$
\begin{equation*}
\left\langle N\left(s_{n}, t_{n}\right), g(x)-g\left(x_{n}\right)\right\rangle \geq F\left(g\left(x_{n}\right)\right)-F(g(x)) . \tag{2.1}
\end{equation*}
$$

Since T is an upper semicontinuous mapping with compact set-values and the set $\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{u\}$ is compact, it follows that $T\left(\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{u\}\right)$ is compact [1]. Therefore without loss of generality, we may assume that the sequences $\left\langle s_{n}\right\rangle$ and $\left\langle t_{n}\right\rangle$ converge to some s and t, respectively. Then $s \in A(u)$, $t \in T(u)$ and by taking the limitinf in (2.1), we obtain

$$
\langle N(s, t), g(x)-g(u)\rangle \geq F(g(u))-F(g(x)) .
$$

Hence $u \in B$, which shows that B is closed.
Remark 2.1. If $A \equiv 0, N: X^{*} \rightarrow X^{*}$ is an identity and $g(x)=x$ for all $x \in K$, then Theorem 2.1 reduces to Theorem 2.1 in [11]. Moreover, if T is single valued and X is a Banach space, then Theorem 2.1 reduces to Theorem 3.2 in [5].

Theorem 2.2. Under the assumptions of Theorem 2.1 if, in addition, F is convex and $A\left(x^{*}\right), T\left(x^{*}\right)$ are convex, then x^{*} is a strong solution of (GFIMVIP), that is, there exists $s^{*} \in A\left(x^{*}\right), t^{*} \in T\left(x^{*}\right)$ such that

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x))
$$

for all $x \in K$. Furthermore, the set of all strong solutions of (GF-IMVIP) is compact.

Proof. For $x^{*} \in K$ satisfying (1.1), since $A\left(x^{*}\right)$ and $T\left(x^{*}\right)$ are compact, the supremum is attained. That is,

$$
\max _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x))
$$

for all $x \in K$. Since $A\left(x^{*}\right), T\left(x^{*}\right)$ are convex, by Kneser's minimax theorem [6] we have

$$
\begin{aligned}
& \max _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)} \inf _{x \in K}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle-F\left(g\left(x^{*}\right)\right)+F(g(x)) \\
& =\inf _{x \in K} \max _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle-F\left(g\left(x^{*}\right)\right)+F(g(x)) \geq 0 .
\end{aligned}
$$

Therefore, there exists $s^{*} \in A\left(x^{*}\right), t^{*} \in T\left(x^{*}\right)$ such that

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x))
$$

for all $x \in K$. Hence x^{*} is a strong solution of (GF-IMVIP). By the same argument shown in the proof of Theorem 2.1, the set of all strong solutions is compact.

Remark 2.2. If $A \equiv 0, N$ is an identity and $g(x)=x$ for all $x \in K$, then Theorem 2.2 reduces to Theorem 3.2 in [11]. Moreover, if T is single valued X is a Banach space, then Theorem 2.2 reduces to Theorem 3.4 in [5].

Theorem 2.3. Let $F: K \rightarrow \mathbb{R}$ be convex and lower semicontinuous on any nonempty compact set, and $g: K \rightarrow K$ and $N: X^{*} \times X^{*} \rightarrow X^{*}$ be continuous. Let mappings $A, T: K \rightarrow 2^{X^{*}}$ be upper semicontinuous and have nonempty compact set-values. If
(1) for each $x \in K$, there are $s \in A(x), t \in T(x)$ such that for all $y \in K$

$$
\langle N(s, t), g(y)-g(x)\rangle+F(g(y))-F(g(x)) \geq 0,
$$

(2) there is a nonempty compact convex subset C of K such that for every $x \in K \backslash C$, there is a $y \in C$ such that for some $s \in A(x), t \in T(x)$

$$
\langle N(s, t), g(y)-g(x)\rangle<F(g(x))-F(g(y)) .
$$

Then there exists an $x^{*} \in K$ which is a solution of (GF-IMVIP). Furthermore, the solution set of (GF-IMVIP) is compact. If in addition, $A\left(x^{*}\right), T\left(x^{*}\right)$ are also convex, then x^{*} is a strong solution of (GF-IMVIP).

Proof. For a nonempty finite subset L of K, let $C_{L}=C o(C \cup L)$, then C_{L} is a nonempty compact convex subset of K. Define $P: C_{L} \rightarrow 2^{C_{L}}$ as

$$
P(y)=\left\{x \in C_{L}: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle \geq F(g(x))-F(g(y))\right\}
$$

and for each $y \in K$, let
$\Omega(y)=\left\{x \in C: \max _{s \in A(x), t \in T(x)}\langle N(s, t), g(y)-g(x)\rangle+F(g(y))-F(g(x)) \geq 0\right\}$.
For each $x \in K, P(x)$ is nonempty by condition (1). By the Berge Theorem, we know that for each $y \in C_{L}, P(y)$ is closed in C_{L} and for each $y \in K, \Omega(y)$ is compact in C. Next we claim that P is a KKM-mapping. Indeed, if not, there is a nonempty finite subset M of C_{L} such that Co $M \not \subset \bigcup_{x \in M} P(x)$. Then there is an $x^{*} \in \operatorname{Co} M \subset C_{L}$ such that

$$
\max _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle<F\left(g\left(x^{*}\right)\right)-F(g(x)), \text { for all } x \in M
$$

Since F is convex, the mapping

$$
x \mapsto \max _{s \in A(x), t \in T(x)}\left\langle N(s, t), g(x)-g\left(x^{*}\right)\right\rangle+F(g(x))
$$

is quasiconvex on C_{L}. Hence we can deduce that

$$
\max _{s \in A\left(x^{*}\right), t \in T\left(x^{*}\right)}\left\langle N(s, t), g\left(x^{*}\right)-g\left(x^{*}\right)\right\rangle<F\left(g\left(x^{*}\right)\right)-F\left(g\left(x^{*}\right)\right),
$$

which contradicts condition (1). Therefore P is a KKM mapping and by Fan's lemma we have $\bigcap_{x \in C_{L}} P(x) \neq \emptyset$. Let

$$
u \in \bigcap_{x \in C_{L}} P(x),
$$

then $u \in C$ by condition (2). Hence we have

$$
\bigcap_{y \in L} \Omega(y)=\bigcap_{y \in L} P(y) \cap C \neq \emptyset,
$$

for any nonempty finite subset L of K. Therefore, the whole intersection $\bigcap_{y \in K} \Omega(y)$ is nonempty. Let $x^{*} \in \bigcap_{y \in K} \Omega(y)$. Then x^{*} is a solution of (GFIMVIP). Since C is compact, the solution set of (GF-IMVIP) is compact. Finally, if $T\left(x^{*}\right)$ is also convex, then by the same argument shown in the proof of Theorem 2.2, we can prove that x^{*} is a strong solution of (GF-IMVIP).

3. (GF-IMCP)

We first establish the equivalence between strong solutions of (GF-IMVIP) and solutions of (GF-IMCP) on a closed convex cone K in X. The set K is assumed to be a closed convex cone in X.

Theorem 3.1. (i) If x^{*} solves (GF-IMCP), then x^{*} is a strong solution of (GF-IMVIP);
(ii) If $F: K \rightarrow \mathbb{R}$ is a positive homogeneous and convex function and x^{*} is a strong solution of (GF-IMVIP), then x^{*} solves (GF-IMCP).

Proof. Let x^{*} solve (GF-IMCP), then for $x^{*} \in K, s^{*} \in A\left(x^{*}\right)$ and $t^{*} \in T\left(x^{*}\right)$, we have

$$
\left\langle N\left(s^{*}, t^{*}\right), g\left(x^{*}\right)\right\rangle+F\left(g\left(x^{*}\right)\right)=0
$$

and

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)\right\rangle+F(g(x)) \geq 0 \text { for } x \in K
$$

Hence

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) \text { for } x \in K .
$$

Thus x^{*} is a strong solution of (GF-IMVIP).
(ii) Let x^{*} be a strong solution of (GF-IMVIP) then there exist $s^{*} \in A\left(x^{*}\right)$, $t^{*} \in T\left(x^{*}\right)$ such that

$$
\begin{equation*}
\left\langle N\left(s^{*}, t^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq F\left(g\left(x^{*}\right)\right)-F(g(x)) \text { for } x \in K \tag{3.1}
\end{equation*}
$$

Since $F: K \rightarrow \mathbb{R}$ is a positive homogeneous and convex function and set K is a closed convex cone in X, substituting $g(x)=2 g\left(x^{*}\right)$ and $g(x)=\frac{1}{2} g\left(x^{*}\right)$ in (3.1), we obtain

$$
\left\langle N\left(s^{*}, t^{*}\right), g\left(x^{*}\right)\right\rangle \geq-F\left(g\left(x^{*}\right)\right)
$$

and

$$
\left\langle N\left(s^{*}, t^{*}\right), g\left(x^{*}\right)\right\rangle \leq-F\left(g\left(x^{*}\right)\right),
$$

which implies that

$$
\begin{equation*}
\left\langle N\left(s^{*}, t^{*}\right), g\left(x^{*}\right)\right\rangle+F\left(g\left(x^{*}\right)\right)=0 . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we have

$$
\left\langle N\left(s^{*}, t^{*}\right), g(x)\right\rangle+F(g(x)) \geq 0 \text { for } x \in K
$$

Hence x^{*} is a solution of (GF-IMCP).
Remark 3.1. If $T \equiv 0, N$ is an indentity and $g(y)=y$ for $y \in K$, then Theorem 3.1 reduces to Theorem 3.1 considered in [11]. Moreover, if A is single-valued and X is a Banach space, then we obtain Theorem 3.1 considered in [5].

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. In addition, if F : $K \rightarrow \mathbb{R}$ is a positive homogeneous and convex function and A, T have convex set-values, then (GF-IMCP) has a solution. Furthermore the solution set is compact.

Proof. Applying Theorems 2.2 and 3.1, we obtain the conclusion.

Similarly by combining Theorems 2.3 and 3.1 , we have the following result.
Theorem 3.3. Let the assumptions of Theorem 2.3 hold. In addition, if F : $K \rightarrow \mathbb{R}$ is a positive homogeneous function and A, T have convex set-values, then (GF-IMCP) has a solution. Furthermore the solution set is compact.

Remark 3.2. If $A \equiv 0, N$ is an identity and $g(x)=x$ for all $x \in K$, then Theorem 3.3 reduces to Theorem 3.3 in [11]. Moreover, if T is single-valued and X is a Banach space, then Theorem 3.3 reduces to Theorem 3.3 in [5].

References

[1] C. Berge, Espaces Topologique, fonctions, multivoques, Dunod, Paris, 1959.
[2] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
[3] S. C. Fang and E. L. Peterson, Generalized variational inequalities, J. Optim. Theory Appl. 38 (1982), 363-383.
[4] P. T. Harkar and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems: A survey of theory algorithms and applications, Math. Program 48 B (1990), 161-220.
[5] N. J. Huang and J. Li, F-implicit complementarity problems in Banach spaces, ZAA 23(2) (2004), 293-302.
[6] H. Kneser, Sur un theoreme fondamantal de la theorie des Jeux, C.R. Acad. Sci. Paris 234 (1952), 2418-2420.
[7] B. S. Lee, M. Firdosh Khan and Salahuddin, Vector F-implicit complementarity problems with corresponding variational inequality problem, Appl. Math. Lett. 20 (2007), 433-438.
[8] J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), 73-81.
[9] G. Stampacchia, Forms bilineaires sur les ensemble convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
[10] J. C. Yao and J. S. Guo, Variational and generalized variational inequalities with discontinuous mappings, J. Math. Anal. Appl. 182 (1994), 371-392.
[11] L. C. Zeng, Y. C. Lin and J. C. Yao, On weak and strong solutions of F-implicit generalized variational inequalities with appications, Appl. Math. Lett. 19 (2006), 684689.

Byung-Soo Lee
Department of Mathematics
Kyungsung University
Busan 608-736
E-mail address: bslee@ks.ac.kr
M. Firdosh Khan
S. S. School (Boys) Aligarh Muslim University

Aligarh-202002, India
E-mail address: khan_mfk@yahoo.com
SALAHUDDIN
Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
E-mail address: salahuddin12@mailcity.com

[^0]: Received May 14, 2009; Accepted April 12, 2010.
 2000 Mathematics Subject Classification. 49J40, 47H19.
 Key words and phrases. generalized F-implicit multivalued variational inequality problem, generalized F-implicit multivalued complementarity problem, strong solution, weak solution.

 * corresponding author.

