

SOME RESULTS ON FUZZY IDEAL EXTENSIONS OF BCK-ALGEBRAS

WON KYUN JEONG

ABSTRACT. In this paper, we prove that the extension ideal of a fuzzy characteristic ideal of a positive implicative BCK-algebra is a fuzzy characteristic ideal. We introduce the notion of the extension of intuitionistic fuzzy ideal of BCK-algebras and some properties of fuzzy intuitionistic ideal extensions of BCK-algebra are investigated.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [14]. Since then these ideas have been applied to other algebraic structures such as semigroups, groups and rings, etc. In 1991, Xi [12] applied the concept of fuzzy sets to BCK-algebras which are introduced by Y. Imai and K. Iséki in 1966.

Recently, Xie [13] introduced the concept of the extension of a fuzzy ideal of semigroups and investigated some properties of a fuzzy ideal of semigroups. Modifying his idea, in [4], we applied the idea to BCK-algebras. We introduced the notion of the extension of a fuzzy ideal of BCK-algebras and investigated its properties. In this paper, we show that the extension ideal of a fuzzy characteristic ideal of a positive implicative BCK-algebra is a fuzzy characteristic ideal. We introduce the notion of the extension of intuitionistic fuzzy ideal of BCK-algebras and some properties of fuzzy intuitionistic ideal extensions of BCK-algebra are investigated.

2. Preliminaries

We begin with the following well-known definitions and results which are necessary for completeness.

Definition 2.1. An algebra (X; *, 0) of type (2,0) is called a *BCK-algebra* if for all $x, y, z \in X$ the following conditions hold:

- (a) ((x * y) * (x * z)) * (z * y) = 0,
- (b) (x * (x * y)) * y = 0,
- (c) x * x = 0,

Key words and phrases. BCK-algebra, fuzzy characteristic ideal, intuitionistic fuzzy ideal.

C2010 The Young nam Mathematical Society

Received May 25, 2009; Accepted March 12, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

- (d) 0 * x = 0,
- (e) x * y = 0 and y * x = 0 imply x = y.

For any BCK-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X.

A BCK-algebra X has the following properties for all $x, y, z \in X$:

- (1) x * 0 = x,
- (2) (x * y) * z = (x * z) * y,
- (3) $x * y \le x$,
- (4) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

A mapping $f: X \to Y$ of BCK-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. A bijective homomorphism on X is called an *automorphism* on X. Let Aut(X) denote the set of all automorphisms of a BCK-algebra X.

In what follows, X would mean a BCK-algebra unless otherwise specified.

Definition 2.2. ([3]) X is said to be *positive implicative* if it satisfies for all x, y and z in X,

$$(x * z) * (y * z) = (x * y) * z.$$

Definition 2.3. ([2]) A nonempty subset I of X is called an *ideal* of X if

(I1) $0 \in I$,

(I2) $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in X$.

We now review some fuzzy logic concepts. A fuzzy subset μ in a set S is a function from S into [0, 1]. For any fuzzy subsets μ and ν of S, we define

 $\mu \subseteq \nu \Leftrightarrow \mu(x) \leq \nu(x)$ for all $x \in S$.

A fuzzy subset μ in X is called a *fuzzy subalgebra* of X if

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.

Definition 2.4. ([12]) A fuzzy subset μ in X is called a *fuzzy ideal* of X if

(FI1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(FI2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Lemma 2.5. ([5]) If μ is a fuzzy ideal of X and if $x \leq y$, then $\mu(x) \geq \mu(y)$.

3. Fuzzy ideal extensions

Definition 3.1. ([4]) Let μ be a fuzzy subset of X and $a \in X$. The fuzzy subset $\langle \mu, a \rangle : X \longrightarrow [0, 1]$ defined by

$$\langle \mu, a \rangle(x) := \mu(x * a)$$

is called the *extension* of μ by a.

Proposition 3.2. ([4]) Let μ be a fuzzy ideal of X. If $a \leq b$, then $\langle \mu, a \rangle \subseteq \langle \mu, b \rangle$.

Definition 3.3. ([6]) If μ is a fuzzy ideal of X and θ is a map from X into itself, we define a map $\mu^{\theta}: X \to [0,1]$ by $\mu^{\theta}(x) = \mu(\theta(x))$ for every $x \in X$.

Definition 3.4. ([6]) A fuzzy ideal μ of X is called a *fuzzy characteristic ideal* of X if $\mu(\theta(x)) = \mu(x)$ for all $x \in X$ and all $\theta \in \text{Aut}(X)$.

Definition 3.5. Let $\theta: X \to X$ be a homomorphism. The set

$$Fix_{\theta}(X) = \{x \in X \mid \theta(x) = x\}$$

is called the *fixed point set* of X with respect to θ . The set

$$\operatorname{Fix}(X) = \bigcap_{\theta \in \operatorname{Aut}(X)} \operatorname{Fix}_{\theta}(X)$$

is called the *fixed point set* of X.

For every homomorphism θ , the fixed point set $\operatorname{Fix}_{\theta}(X)$ of X with respect to θ is nonempty.

Example 3.6. Let $X = \{0, a, b, c\}$ in which * is defined by :

*	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	a	0	a
c	c	a	a	0

Then (X; *, 0) is a BCK-algebra ([9]). Let 1_X be an identity homomorphism on X, and let f be the function defined by

$$f(0) = 0, f(a) = a, f(b) = c$$
 and $f(c) = b$.

Then we can find that $\operatorname{Aut}(X) = \{1_X, f\}$. Thus, $\operatorname{Fix}_{1_X}(X) = X$ and $\operatorname{Fix}_f(X) = \{0, a\}$. Hence, the fixed point set of X is $\operatorname{Fix}(X) = \{0, a\}$.

Proposition 3.7. Let μ be a fuzzy subset of X and let $\theta : X \to X$ be a homomorphism. Then $\langle \mu^{\theta}, a \rangle = \langle \mu, \theta(a) \rangle^{\theta}$, for all $a \in X$.

Proof. Let $\theta: X \to X$ be a homomorphism and let $a \in X$. For all $x \in X$, we have

$$\langle \mu^{\theta}, a \rangle(x) = \mu^{\theta}(x * a)$$

$$= \mu(\theta(x * a))$$

$$= \mu(\theta(x) * \theta(a))$$

$$= \langle \mu, \theta(a) \rangle(\theta(x))$$

$$= \langle \mu, \theta(a) \rangle^{\theta}(x).$$

Hence $\langle \mu^{\theta}, a \rangle = \langle \mu, \theta(a) \rangle^{\theta}$, completing the proof.

Lemma 3.8. Let μ be a fuzzy ideal of a positive implicative BCK-algebra X and let $\theta : X \to X$ be an onto homomorphism and $a \in X$. Then $\langle \mu, a \rangle^{\theta}$ is a fuzzy ideal of X.

Proof. It follows from [6] and [4] that $\langle \mu, a \rangle^{\theta}$ is a fuzzy ideal of X.

Theorem 3.9. Let μ be a fuzzy ideal of a positive implicative BCK-algebra X. If μ is a fuzzy characteristic ideal of X and $a \in Fix(X)$, then the extension $\langle \mu, a \rangle$ of μ by a is a fuzzy characteristic ideal of X.

Proof. Let μ be a fuzzy characteristic ideal of X and let $a \in Fix(X)$. Let θ be any automorphism of X. Since μ is a fuzzy ideal of X, it follows from Lemma 3.8 that $\langle \mu, a \rangle^{\theta}$ is a fuzzy ideal of X. Since μ is a fuzzy characteristic ideal of X, we have $\mu^{\theta} = \mu$, that is, $\mu^{\theta}(x) = \mu(\theta(x)) = \mu(x)$, for all $x \in X$. It follows that

$$\begin{aligned} \langle \mu, a \rangle^{\theta}(x) &= \langle \mu, a \rangle(\theta(x)) \\ &= \mu(\theta(x) * a) \\ &= \mu(\theta(x * a)) \\ &= \mu^{\theta}(x * a) \\ &= \mu(x * a) \\ &= \langle \mu, a \rangle(x), \end{aligned}$$

for all $x \in X$. Hence, $\langle \mu, a \rangle^{\theta} = \langle \mu, a \rangle$. Thus, $\langle \mu, a \rangle$ is a fuzzy characteristic ideal of X. This completes the proof.

Example 3.10. Let $X = \{0, a, b, c\}$ in which * is defined by :

0	a	b	с	
0	0	0	0	
a	0	0	0	
b	b	0	b	
c	c	c	0	
	$\begin{array}{c} 0 \\ 0 \\ a \\ b \\ c \end{array}$	$\begin{array}{c c} 0 & a \\ \hline 0 & 0 \\ a & 0 \\ b & b \\ c & c \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Then (X; *, 0) is a positive implicative BCK-algebra ([9]). Let θ be the function defined by

$$\theta(0) = 0, \theta(a) = a, \theta(b) = c \text{ and } \theta(c) = b.$$

Then we can easily show that $\theta \in \operatorname{Aut}(X)$. Moreover, we find that $\operatorname{Aut}(X) = \{1_X, \theta\}$, where 1_X is the identity automorphism on X. Since $\operatorname{Fix}(X) = \{0, a\}$, we have $b \notin \operatorname{Fix}(X)$. Let μ be the fuzzy subset in X defined by

 $\mu(0) = 0.9, \mu(a) = 0.7, \mu(b) = 0.3$ and $\mu(c) = 0.5$.

Then it is a fuzzy ideal of X. It follows from [4] that $\langle \mu, b \rangle$ is also a fuzzy ideal of X. But, $\langle \mu, b \rangle$ is not a fuzzy characteristic ideal of X, since $\langle \mu, b \rangle^{\theta}(c) = 0.9 \neq 0.5 = \langle \mu, b \rangle(c)$.

Definition 3.11. ([8]) Let X and Y be two sets, let $f : X \to Y$ be a map. A fuzzy subset μ in X is said to be *f*-invariant if f(x) = f(y) implies $\mu(x) = \mu(y)$ for all $x, y \in X$.

Theorem 3.12. Let μ be a fuzzy subset of a BCK-algebra X and let $f : X \to X$ be a homomorphism. If μ is f-invariant, then $\langle \mu, a \rangle$ is f-invariant, for all $a \in X$.

Proof. Suppose that μ is an *f*-invariant fuzzy subset of *X*. Let $f: X \to X$ be a homomorphism, and let $x \in X$. If f(x) = f(y), then f(x * a) = f(x) * f(a) = f(y) * f(a) = f(y * a). Since μ is *f*-invariant, we have $\mu(x * a) = \mu(y * a)$. It follows that $\langle \mu, a \rangle(x) = \langle \mu, a \rangle(y)$. Thus, $\langle \mu, a \rangle$ is *f*-invariant, for all $a \in X$. \Box

Corollary 3.13. Let $f : X \to X$ be a homomorphism on a positive implicative BCK-algebra X and let μ be an f-invariant fuzzy ideal of X and $a \in X$. Then the extension $\langle \mu, a \rangle$ of μ by a is an f-invariant fuzzy ideal of X.

Proof. It follows from [4] that $\langle \mu, a \rangle$ of μ by a is a fuzzy ideal of X. By the above theorem, $\langle \mu, a \rangle$ is f-invariant, and the result follows.

Definition 3.14. ([10]) A nonempty subset Q of X is called a *quasi-left (resp. quasi-right) ideal* of X if

(QI1) $0 \in Q$,

(QI2) if $x \in Q$ and $y \in X$, then $y \wedge x \in Q$ (resp. $x \wedge y \in Q$).

Moreover, Q is called a *quasi-ideal* of X if it satisfies the left and right conditions.

Note that if X is a BCK-algebra, then $\{0\}$ and X are quasi-ideals of X.

Definition 3.15. ([10]) A fuzzy subset μ of X is called a *fuzzy quasi-left (resp. quasi-right) ideal* in X if

(FQI1) $\mu(0) \ge \mu(x)$, for all $x \in X$,

(FQI2) $\mu(x \wedge y) \ge \mu(y)$ (resp. $\mu(x \wedge y) \ge \mu(x)$), for all $x, y \in X$.

Moreover, μ is called a *fuzzy quasi-ideal* in X if it satisfies the fuzzy quasi-left and quasi-right conditions.

Note that if X is a commutative BCK-algebra, then the fuzzy quasi-left ideal and the fuzzy quasi-right ideal both coincide to fuzzy quasi-ideal.

Definition 3.16. ([11]) A nonconstant fuzzy quasi-left (resp. quasi-right) ideal of X is called a *fuzzy prime left (resp. right) quasi-ideal* of X if

 $\mu(x \wedge y) = \max\{\mu(x), \mu(y)\} \text{ (resp. } \mu(y \wedge x) = \max\{\mu(x), \mu(y)\}),$

for all $x, y \in X$.

Theorem 3.17. Let μ be a fuzzy quasi-left (resp. quasi-right) ideal of a positive implicative BCK-algebra X. Then $\langle \mu, a \rangle$ is also a fuzzy quasi-left (resp. quasi-right) ideal of X, for all $a \in X$.

Proof. Let μ be a fuzzy quasi-left ideal of X, and let $a \in X$. If $x \in X$, then

$$\begin{split} \langle \mu, a \rangle(0) &= \mu(0*a) \\ &= \mu(0) \\ &\geq \mu(x*a) \\ &= \langle \mu, a \rangle(x). \end{split}$$

Next, let $x, y \in X$. Since X is positive implicative, we have

$$\begin{aligned} \langle \mu, a \rangle (x \wedge y) &= \mu((x \wedge y) * a) \\ &= \mu((x * a) \wedge (y * a)) \\ &\geq \mu(y * a) \\ &= \langle \mu, a \rangle(y). \end{aligned}$$

Thus, $\langle \mu, a \rangle$ is a fuzzy quasi-left ideal of X. Similarly, if μ is a fuzzy quasi-right ideal of X, then so is $\langle \mu, a \rangle$, for all $a \in X$.

The converse of Theorem 3.17 need not be true, as shown by the following example.

Example 3.18. Let (X; *, 0) be as in Example 3.10. Let μ be the fuzzy subset in X defined by

$$\mu(0) = 0.9, \mu(a) = 1, \mu(b) = 0.8$$
 and $\mu(c) = 1$.

Then it is a routine to verify that $\langle \mu, c \rangle$ is a fuzzy quasi-left ideal of X. But, μ is not a fuzzy quasi-left ideal of X, since $\mu(0) \geq \mu(a)$.

Theorem 3.19. Let μ be a fuzzy prime quasi-left (resp. quasi-right) ideal of a positive implicative BCK-algebra X and let $a \in X$. Then $\langle \mu, a \rangle$ is also a fuzzy prime quasi-left (resp. quasi-right) ideal of X, if $\langle \mu, a \rangle$ is nonconstant.

Proof. Let μ be a fuzzy quasi-left ideal of X and let $a \in X$. Assume that the fuzzy subset $\langle \mu, a \rangle$ is nonconstant. Theorem 3.17 says that $\langle \mu, a \rangle$ is a fuzzy quasi-left ideal of X. Let $x, y \in X$. Since μ is a fuzzy prime quasi-left ideal of X, we have

$$\begin{split} \langle \mu, a \rangle (x \wedge y) &= \mu((x \wedge y) * a) \\ &= \mu((x * a) \wedge (y * a)) \text{ since } X \text{ is positive implicative} \\ &= \max\{\mu(x \wedge a), \mu(y \wedge a)\} \\ &= \max\{\langle \mu, a \rangle(x), \langle \mu, a \rangle(y)\}. \end{split}$$

Thus, $\langle \mu, a \rangle$ is a fuzzy prime quasi-left ideal of X.

Example 3.20. Let (X; *, 0) be as in Example 3.10. Let μ be the fuzzy subset in X defined as follows :

$$\mu(0) = \mu(a) = \mu(b) = 1$$
 and $\mu(c) = 0.5$.

Then it is a fuzzy prime quasi-left ideal of X. It is easily check that

$$\langle \mu, c \rangle(x \wedge y) = \max\{\langle \mu, c \rangle(x), \langle \mu, c \rangle(y)\},\$$

for all $x, y \in X$. But the fuzzy subset $\langle \mu, c \rangle$ is constant.

4. Intuitionistic fuzzy ideals extensions

Definition 4.1. ([1]) An *intuitionistic fuzzy set* (briefly, IFS) in a nonempty set X is a pair (μ, γ) such that the functions $\mu : X \to [0, 1]$ and $\gamma : X \to [0, 1]$ satisfy

$$0 \le \mu(x) + \gamma(x) \le 1$$
, for all $x \in X$.

Definition 4.2. ([7]) An IFS (μ, γ) in X is called an *intuitionistic fuzzy subal*gebra of X if it satisfies:

(IS1) $\mu(x * y) \ge \min\{\mu(x), \mu(y)\},\$ (IS2) $\gamma(x * y) \le \max\{\gamma(x), \gamma(y)\},\$ for all $x, y \in X.$

Definition 4.3. ([7]) An IFS (μ, γ) in X is called an *intuitionistic fuzzy ideal* of X if it satisfies

 $\begin{array}{ll} (\mathrm{IF1}) \hspace{0.2cm} \mu(0) \geq \mu(x) \hspace{0.2cm} \mathrm{and} \hspace{0.2cm} \gamma(0) \leq \gamma(x), \\ (\mathrm{IF2}) \hspace{0.2cm} \mu(x) \geq \min\{\mu(x\ast y), \mu(y)\}, \\ (\mathrm{IF3}) \hspace{0.2cm} \gamma(x) \leq \max\{\gamma(x\ast y), \gamma(y)\}, \end{array}$

for all $x, y \in X$.

Theorem 4.4. ([7]) Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subalgebra of X.

Lemma 4.5. ([7]) Let (μ, γ) be an intuitionistic fuzzy ideal of X. Then μ is order-reversing and γ is order-preserving.

Definition 4.6. Let (μ, γ) be an IFS in X and $a, b \in X$. The IFS $\langle (\mu, \gamma), (a, b) \rangle$ defined by

$$\langle (\mu, \gamma), (a, b) \rangle = (\langle \mu, a \rangle, \langle \gamma, b \rangle)$$

is called the *extension* of (μ, γ) by (a, b). If a = b, then we denote it by $\langle (\mu, \gamma), a \rangle$.

Lemma 4.7. Let (μ, γ) be an IFS in X and $a, b \in X$. Then the extension $\langle (\mu, \gamma), (a, b) \rangle$ of (μ, γ) by (a, b) is an IFS in X.

Proof. It is straightforward.

Theorem 4.8. Let (μ, γ) be an intuitionistic fuzzy subalgebra of a positive implicative BCK-algebra X and $a, b \in X$. Then the extension $\langle (\mu, \gamma), (a, b) \rangle$ of (μ, γ) by (a, b) is also an intuitionistic fuzzy subalgebra of X.

Proof. Let (μ, γ) be an intuitionistic fuzzy subalgebra of a positive implicative BCK-algebra X and $a, b \in X$. Let $x, y \in X$. Then we have

$$\begin{split} \langle \mu, a \rangle (x * y) &= \mu((x * y) * a) \\ &= \mu((x * a) * (y * a)) \\ &\geq \min\{\mu(x * a), \mu(y * a)\} \\ &= \min\{\langle \mu, a \rangle(x), \langle \mu, a \rangle(y)\} \end{split}$$

and

$$\begin{split} \langle \gamma, b \rangle (x * y) &= \gamma((x * y) * b) \\ &= \gamma((x * b) * (y * b)) \\ &\leq \max\{\gamma(x * b), \gamma(y * b)\} \\ &= \max\{\langle \gamma, b \rangle(x), \langle \gamma, b \rangle(y)\}. \end{split}$$

Thus, $\langle (\mu, \gamma), (a, b) \rangle$ is an intuitionistic fuzzy subalgebra of X.

Theorem 4.9. Let (μ, γ) be an intuitionistic fuzzy ideal of a positive implicative BCK-algebra X and $a, b \in X$. Then the extension $\langle (\mu, \gamma), (a, b) \rangle$ of (μ, γ) by (a, b) is an intuitionistic fuzzy ideal of X.

Proof. Since (μ, γ) is an intuitionistic fuzzy ideal of X, we have $\langle \mu, a \rangle(0) = \mu(0 * a) = \mu(0) \ge \mu(x * a) = \langle \mu, a \rangle(x)$ and $\langle \gamma, b \rangle(0) = \gamma(0 * b) = \gamma(0) \le \gamma(x * b) = \langle \gamma, b \rangle(x)$ for all $x \in X$. Thus, $\langle (\mu, \gamma), (a, b) \rangle$ satisfies condition (IF1) of definition 4.2. Next, let $x, y \in X$. Then

$$\begin{split} \langle \mu, a \rangle(x) &= \mu(x \ast a) \\ &= \min\{\mu((x \ast a) \ast (y \ast a)), \mu(y \ast a)\} \\ &\geq \min\{\mu((x \ast y) \ast a), \mu(y \ast a)\} \\ &= \min\{\langle \mu, a \rangle(x \ast y), \langle \mu, a \rangle(y)\} \end{split}$$

and

$$\begin{split} \langle \gamma, b \rangle(x) &= \gamma(x * b) \\ &\leq \max\{\gamma((x * b) * (y * b)), \gamma(y * b)\} \\ &= \max\{\gamma((x * y) * b), \gamma(y * b)\} \\ &= \max\{\langle \gamma, b \rangle(x * y), \langle \gamma, b \rangle(y)\}. \end{split}$$

Therefore, $\langle (\mu, \gamma), (a, b) \rangle$ is an intuitionistic fuzzy ideal of X. This completes the proof.

386

Corollary 4.10. Let (μ, γ) be an intuitionistic fuzzy subalgebra (resp. ideal) of a positive implicative BCK-algebra X and $a \in X$. Then the extension $\langle (\mu, \gamma), a \rangle$ of (μ, γ) by a is an intuitionistic fuzzy subalgebra (resp. ideal) of X.

Proof. It is straightforward.

References

- [1] K. T. Atanassov, An intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.
- [2] K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes (presently, Kobe J. Math.) 3 (1975), 1–12.
- [3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon. 23 (1978), 1–26.
- W. K. Jeong, Fuzzy ideals extensions of BCK-algebras, Far East J. Math. Sci. 7 (2002), 67–75.
- [5] Y. B. Jun, S. M. Hong, J. Meng and X. L. Xin, Characterizations of fuzzy positive implicative ideals in BCK-algebras, Math. Japon. 40 (1994), 503–507.
- [6] Y. B. Jun, S. M. Hong and R. E. Roh, Fuzzy characteristic subalgebras/ideals of a BCK-algebra, Pusan Kyongnam Math. J. 9 (1993), 127–132.
- [7] Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, Internat. J. Math & Math. Sci. 24 (2000), 839–849.
- [8] Y. B. Jun E. H. Roh, J. Meng and X. L. Xin, Fuzzy prime and fuzzy irreducible ideals in BCK-algebras, Soochow J. Math. 21 (1995), 49–56.
- [9] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
- [10] T. Sakuragi, On fuzzy quasi-ideals and their radicals in a commutative BCK-algebra, Math. Japon. 46 (1997), 485–490.
- [11] T. Sakuragi, On prime fuzzy quasi-ideals and primary fuzzy quasi-ideals, in a commutative BCK-algebra, Math. Japon. 48 (1997), 437–445.
- [12] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935–942.
- [13] X. Y. Xie, Fuzzy ideals extensions of semigroups, Soochow J. Math. 27 (2001), 125–138.
- [14] L. A. Zadeh, Fuzzy sets, Inform and Control. 8 (1965), 378–353.

WON KYUN JEONG DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY DAEGU 702-701, KOREA *E-mail address:* wkjeong@knu.ac.kr