

## VECTOR F-COMPLEMENTARITY PROBLEMS WITH g-DEMI-PSEUDOMONOTONE MAPPINGS IN BANACH SPACES

BYUNG-SOO LEE, M. FIRDOSH KHAN, AND SALAHUDDIN

ABSTRACT. In this paper, a class of g-demi-pseudomonotone mappings is introduced and the solvability of a class of generalized vector F-complementarity problems with the mappings in Banach spaces is considered.

## 1. Introduction and Preliminaries

In the past years, many important generalizations of monotonicity such as quasi monotonicity, pseudo-monotonicity, dense-pseduomonotonicity and semimonotonicity have been introduced to study the various classes of variational inequalities and complementarity problems [7, 9, 11-14].

In particular, Chen [1] introduced a class of variational inequalities with semi-monotone single-valued mappings, which are continuous in the first variable and monotone in the second variable. In 2003, Fang and Huang [5] considered a class of variational-like inequalities with generalized semi-monotone single-valued mappings. For the cases of set-valued mappings, Kassay and Kolumban [10] considered variational inequalities with semi-pseudomonotonicity, and Kang et al. [8] considered variational-like inequalities with generalized semi-pseudomonotonicity.

On the other hand, Fang and Huang [4] also considered the vector *F*complementarity problems with demi-pseudomonotone single-valued mappings, which are vector demicontinuous in the first variable and pseudomonotone in the second variable.

In this paper, we consider the generalized vector F-complementarity problems which generalizing the vector F-complementarity problems considered by Fang and Huang, by adding a continuous convex mapping g as finding  $u \in K$ 

O2010 The Young nam Mathematical Society



Received November 19, 2009; May 1, 2010.

<sup>2000</sup> Mathematics Subject Classification. 49J40, 90C33, 47H10.

Key words and phrases. generalized vector variational inequality, generalized vector *F*-complementarity problem, *g*-pseudomonotone, *g*-demi-pseudomonotone, hemicontinuous, vector demicontinuous, *g*-demi-pseudomonotone, KKM theorem.

such that

$$\langle A(u,u), g(u) \rangle + F(g(u)) \neq 0 \langle A(u,u), g(v) \rangle + F(g(v)) \neq 0, \text{ for } v \in K,$$

where  $A: K \times K \to L(X, Y)$ ,  $F: K \to Y$  and  $g: K \to K$  are mappings for a subset K of a reflexive Banach space X, an ordered Banach space  $(Y, \leq)$  and a collection L(X, Y) of continuous linear mappings from X into Y.

**Definition 1.1.** Let (Y, C) be an ordered Banach space, where C is a pointed (i.e.,  $C \cap \{-C\} = \{0\}$ ) closed convex cone with a nonempty interior int C. With C we define the order relations  $\geq, \geq, <$  and  $\neq$  as follows;

$$\begin{split} x &\geq y \Leftrightarrow x - y \in C, \\ x &\not\geq y \Leftrightarrow x - y \notin C, \\ x &< y \Leftrightarrow y - x \in \text{int } C, \\ x & \not< y \Leftrightarrow y - x \notin \text{int } C \text{ for } x, y \in Y. \end{split}$$

**Definition 1.2.** A mapping  $T: K \to L(X, Y)$  is said to be hemicontinuous if for any fixed  $x, y \in K$ , the mapping  $t \to \langle T(x + t(y - x)), y - x \rangle$  is continuous at  $0^+$ .

**Definition 1.3.** Let  $g: K \to K$  be a single-valued mapping,  $T: K \to L(X, Y)$  and  $F: K \to Y$  two nonlinear mappings. T is said to be g-pseudomonotone with respect to F if for  $x, y \in K$ ,

$$\langle T(x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not < 0$$
  
implies  $\langle T(y), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \ge 0.$ 

**Definition 1.4.** A mapping  $G: K \subset X \to 2^X$  is said to be a KKM mapping if for any finite set  $\{x_1, x_2, \ldots, x_n\} \subset K$ ,  $\operatorname{Co}\{x_1, x_2, \ldots, x_n\} \subset \bigcup_{i=1}^n G(x_i)$ , where  $2^X$  denotes the family of all nonempty subsets of X.

**Definition 1.5.** A mapping  $f: K \to Y$  is said to be convex if  $f(tx+(1-t)y) \le tf(x) + (1-t)f(y)$  for  $x, y \in K$  and  $t \in [0,1]$ .

**F-KKM Theorem (**[3]). Let M be a nonempty subset of a Hausdorff topological vector space E and  $G: M \to 2^E$  be a KKM mapping. If G(x) is closed in E for every  $x \in M$  and compact for some  $x \in M$  then

$$\bigcap_{x \in M} G(x) \neq \emptyset.$$

**Lemma 1.1.** ([1]) Let  $(Y, \leq)$  be an ordered Banach space induced by a pointed closed convex cone C with nonempty int C. For  $a, b, c \in Y$ , the following unifications hold:

$$c \not\leq a$$
 and  $a \geq b$  implies  $b \not\geq c$ ,  
 $c \not\geq a$  and  $a \leq b$  implies  $b \not\leq c$ .

390

391

## 2. Main results

First we consider the equivalence of Stampacchia-type of g-pseudomonotone vector variational inequalities and Minty-type of g-pseudomonotone vector variational inequalities, and then the existences of solutions to them mentioned.

Next we consider the existences of solutions to the more generalized vector F-complementarity problems with g-demi-pseudomonotone mappings.

In this paper, K is a bounded closed and convex subset of a real reflexive Banach space,  $(Y, \leq)$  an ordered Banach space induced by a pointed closed convex cone C with  $intC \neq \emptyset$  and L(X, Y) the space of all the continuous linear mappings from X into Y.

**Theorem 2.1.** Let  $T: K \to L(X, Y)$  be a hemicontinuous mapping,  $g: K \to K$  and  $F: K \to Y$  two convex mappings. Suppose that T is g-pseudomonotone with respect to F. Then for any given point  $x_0 \in K$ , the following are equivalent

(i) 
$$\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \not\leq 0$$
 for  $x \in K$ ;  
(ii)  $\langle T(x), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \geq 0$  for  $x \in K$ ;

(ii) 
$$\langle T(x), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \ge 0 \text{ for } x \in K$$

*Proof.* We only prove that (ii) implies (i), the converse is obvious by Definition 1.3.

Suppose that (ii) holds. For any given  $x \in K$  and  $t \in (0,1)$ , let  $x_t = x_0 + t(x - x_0)$  then it follows from the convexities of g and F that

$$t\langle T(x_0 + t(x - x_0)), g(x) - g(x_0) \rangle + t(F(g(x)) - F(g(x_0))) \\ \ge \langle T(x_0 + t(x - x_0)), t(g(x) - g(x_0)) \rangle + F(g(tx + (1 - t)x_0)) - F(g(x_0)) \\ \ge 0.$$

Hence

$$\langle T(x_0 + t(x - x_0)), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \ge 0.$$

Since T is hemicontinuous and C is closed, letting  $t \to 0^+$  in the above inequality, we have

$$\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \ge 0.$$

Hence

$$\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \not < 0$$
 for  $x \in K$ .

**Theorem 2.2.** Let  $g: K \to K, F: K \to Y$  be continuous convex mappings and  $T: K \to L(X, Y)$  a hemicontinuous mapping.

If T is g-pseudomonotone with respect to F, then there exists  $x \in K$  such that

$$\langle T(x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not\leq 0 \text{ for } y \in K.$$

*Proof.* Define two set-valued mappings  $G_1, G_2: K \to 2^K$  as follows:

$$G_1(z) = \{x \in K : \langle T(x), g(z) - g(x) \rangle + F(g(z)) - F(g(x)) \neq 0\}$$

and

392

$$G_2(z) = \{ x \in K : \langle T(z), g(z) - g(x) \rangle + F(g(z)) - F(g(x)) \ge 0 \}$$

Then  $G_1$  is a KKM mapping. In fact, if it is not, then there exist  $\{x_1, \ldots, x_n\} \subset K$ ,  $x = \sum_{i=1}^n t_i x_i$  with  $t_i > 0$  and  $\sum_{i=1}^n t_i = 1$  such that  $x \notin \bigcup_{i=1}^n G_1(x_i)$ . It follows that

$$\langle T(x), g(x_i) - g(x) \rangle + F(g(x_i)) - F(g(x)) < 0, \ i = 1, \dots, n.$$

By the convexities of F and g, we have

$$0 = \langle T(x), g(x) - g(x) \rangle + F(g(x)) - F(g(x))$$
  

$$\leq \sum_{i=1}^{n} t_i \langle T(x), g(x_i) - g(x) \rangle + \sum_{i=1}^{n} t_i F(g(x_i)) - F(g(x))$$
  

$$= \sum_{i=1}^{n} t_i \Big[ \langle T(x), g(x_i) - g(x) \rangle + F(g(x_i)) - F(g(x)) \Big]$$
  

$$\leq 0.$$

Hence  $0 \in \operatorname{int} C$ , which derives a contradiction. Thus  $G_1$  is a KKM mapping. On the other hand, since T is g-pseudomonotone with respect to F,  $G_1(z) \subset G_2(z)$  for  $z \in K$  and so  $G_2$  is also a KKM mapping. Also since K is bounded closed and convex, K is weakly compact. Furthermore, it is easy to check that  $G_2(z) \subset K$  is closed and convex because F and g are continuous and convex. Hence  $G_2(z)$  is weakly compact for each  $z \in K$ . It follows from F-KKM Theorem and Theorem 2.1 that

$$\bigcap_{z \in K} G_1(z) = \bigcap_{z \in K} G_2(z) \neq \emptyset.$$

Thus there exists  $x \in K$  such that

$$\langle T(x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not\leq 0 \text{ for } y \in K.$$

**Definition 2.1.** Let  $g: K \to K$  be a single-valued mapping,  $A: K \times K \to L(X,Y)$  and  $F: K \to Y$  two nonlinear mappings. A is said to be g-demipseudomonotone with respect to F if the following two conditions hold;

(a) for each fixed  $u \in K, \, A(u, \cdot)$  is g-pseudomonotone with respect to F. That is,

$$\langle A(u,x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not < 0$$

implies

$$\langle A(u,y), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \ge 0 \text{ for } x, y \in K.$$

393

(b) for each fixed v ∈ K, A(v, ·) is vector demicontinuous, that is, for any net {u<sub>α</sub>} ⊂ K and w ∈ X, {u<sub>α</sub>} converges to u<sub>0</sub> in the weak topology of X implies that ⟨A(u<sub>α</sub>, v), w⟩ converges to ⟨A(u<sub>0</sub>, v), w⟩ in the norm topology of Y.

**Definition 2.2.** A mapping  $F: K \to Y$  is said to be completely continuous if for any net  $\{u_{\alpha}\} \subset K$ ,  $\{u_{\alpha}\}$  converges to  $u_0$  in the weak topology implies that  $F(u_{\alpha})$  converges to  $F(u_0)$  in the norm topology.

**Theorem 2.3.** Let  $K \subset X$  be a nonempty bounded closed and convex set,  $F: K \to Y$  a completely continuous and convex mapping and  $g: K \to K$  a continuous and convex mapping. Suppose that

- (i) A is g-demi-pseudomonotone with respect to F;
- (ii) for each  $x \in K$ ,  $A(x, \cdot) : K \to L(X, Y)$  is finite dimensional continuous, i.e., for any finite dimensional subspace  $D \subset X$ ,  $A(x, \cdot) : K \cap D \to L(X, Y)$  is continuous. Then there exists  $u \in K$  such that

$$\langle A(u,u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \not\leq 0 \text{ for } v \in K.$$

*Proof.* Let  $D \subset X$  be a finite-dimensional subspace with  $K_D = D \cap K \neq \emptyset$ . For each  $w \in K$ , consider the following problem:

Find  $u_0 \in K_D$  such that

$$\langle A(w, u_0), g(v) - g(u_0) \rangle + F(g(v)) - F(g(u_0)) \not\leq 0 \text{ for } v \in K_D.$$
 (2.1)

Since  $K_D \subset D$  is bounded closed and convex,  $A(w, \cdot)$  is continuous on  $K_D$  and g-pseudomonotone with respect to F for each fixed  $w \in K$ , from Theorem 2.2, we know that problem (2.1) has a solution  $u_0 \in K_D$ .

Now we define a set-valued mapping  $T: K_D \to 2^{K_D}$  as follows:

$$T(w) = \{ u \in K_D : \langle A(w, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \text{ for } v \in K_D \},$$
  
for  $w \in K_D$ .

By Theorem 2.1, for each fixed  $w \in K_D$ ,

$$\{u \in K_D : \langle A(w, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \text{ for } v \in K_D \} \\= \{u \in K_D : \langle A(w, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \geq 0 \text{ for } v \in K_D \}.$$

Since F is completely continuous and convex, it follows that  $T: K_D \to 2^{K_D}$  has nonempty bounded closed and convex values. We also know that T is upper semicontinuous by the vector demicontinuity of  $A(\cdot, u)$ . By using the Glicksberg fixed point theorem [6], T has a fixed point  $w_0 \in K_D$ , i.e.,

$$\langle A(w_0, w_0), g(v) - g(w_0) \rangle + F(g(v)) - F(g(w_0)) \not < 0 \text{ for } v \in K_D.$$
 (2.2)

Let  $\mathcal{D} = \{ D \subset X \colon D \text{ is a finite-dimensional subspace with } D \cap K \neq \emptyset \}$  and

$$W_D = \{ u \in K : \langle A(u, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \ge 0 \text{ for } v \in K_D \}$$
  
for  $D \in \mathcal{D}$ .

By (2.2) and Theorem 2.1, we know that  $W_D$  is nonempty and bounded. Then the weak closure  $cl(W_D)$  of  $W_D$  is weakly compact in D.

For any  $D_i \in \mathcal{D}$ , i = 1, 2, ..., n, we know that  $W_{\bigcup D_i} \subset \cap W_{D_i}$ . So  $\{cl(W_D) :$ 

 $D \in \mathcal{D}$  has the finite intersection property. It follows that

$$\bigcap_{D\in\mathcal{D}} cl(W_D) \neq \emptyset.$$

Let  $u \in \bigcap_{D \in \mathcal{D}} cl(W_D)$ . We claim that

$$\langle A(u,u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \not\leq 0 \text{ for } v \in K.$$

Indeed, for each  $v \in K$ , let  $D \in \mathcal{D}$  be such that  $v \in K_D$  and  $u \in K_D$ . Since  $W_D$  is weakly closed there exists a net  $\{u_\alpha\} \subset W_D$  such that  $\{u_\alpha\}$  converges to u with respect to the weak topology of X. It follows that

$$\langle A(u_{\alpha}, v), g(v) - g(u_{\alpha}) \rangle + F(g(v)) - F(g(u_{\alpha})) \ge 0.$$

It follows that

$$\langle A(u,v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \ge 0 \text{ for } v \in K,$$

by the vector demicontinuity of  $A(\cdot, v)$  and the continuities of F and g. By Theorem 2.1, we know

$$\langle A(u,u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \not < 0 \text{ for } v \in K.$$

**Theorem 2.4.** Suppose that K is a nonempty closed convex cone and all the conditions of Theorem 2.3 hold. Furthermore, if g(0) = 0 and F(0) = 0, then there exists  $u \in K$  such that

$$\begin{split} \langle A(u,u), \ g(u) \rangle + F(g(u)) \not > 0 \ and \\ \langle A(u,u), \ g(v) \rangle + F(g(v)) \not < 0 \ for \ v \in K. \end{split}$$

*Proof.* By Theorem 2.3, there exists  $u \in K$  such that

$$\langle A(u,u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \not\leq 0, \text{ for } v \in K.$$
 (2.3)

Since g(0) = 0 and F(0) = 0, we have

$$\langle A(u,u), g(u) \rangle + F(g(u)) \ge 0.$$

On the other hand, any  $w \in K$ , substituting v = u + w into (2.3), we have

$$\langle A(u,u), g(u+w) - g(u) \rangle + F(g(u+w)) - F(g(u)) \not< 0.$$

Since g and F are convex,

$$g(u+w) \le g(u) + g(w)$$

and

$$F(g(u+w)) \le F(g(u) + g(w)) \le F(g(u)) + F(g(w))$$

It follows Lemma 1.1, that

$$\langle A(u,u), g(w) \rangle + F(g(w)) \not< 0 \text{ for } w \in K.$$

395

*Remark* 2.1. By putting g = I, the identity in Theorems 2.1, 2.2, 2.3 and 2.4, we obtain the corresponding results in Fang and Huang [4].

## References

- Y. Q. Chen, On the semi-monotone operator theory and applications, J. Math. Anal. Appl. 231 (1999), 177–192.
- [2] G. Y. Chen and X. Q. Yang, The vector complementarity problem and its equivalences with the weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136–158.
- [3] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519–537.
- [4] Y. P. Fang and N. J. Huang, The vector F-complementarity problems with demipseudomonotone mappings in Banach spaces, Appl. Math. Lett. 16 (2003), 1019–1024.
- [5] Y. P. Fang and N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Optim. Th. Appl. 118 (2003), 327–338.
- [6] I. Glicksberg, A further generalization of Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc. 36 (1952), 170–174.
- [7] N. Hadjesavvas and S. Schaible, A quasimonotone variational inequalities in Banach spaces, J. Optim. Theo. Appl. 90 (1996), 95–111.
- [8] M. K. Kang, N. J. Huang and B. S. Lee, Generlized pseudomonotone set-valued variational-like inequalities, Indian J. Math. 45 (2003), 251–264.
- [9] S. Karamardian, Complementarity over cones with monotone and pseudomonotone maps, J. Optim. Theo. Appl. 18 (1976), 445–454.
- [10] G. Kassay and J. Kolumban, Variational inequalities given by semi-pseudomonotone mappings, Nonlinear Analysis Forum 5 (2000), 35–50.
- D. T. Luc, Existence results for densely pseudomonotone variational inequalities, J. Math. Anal. Appl. 254 (2001), 291–308.
- [12] R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Lett. 10(4) (1997), 25–27.
- [13] H. Y. Yin, C.X. Hu and Z.X. Zhang, The F-complementarity problems and its equivalence with the least element problem, Acta Math. Sinica 44(4) (2001), 679–686.
- [14] G. X. Z. Yuan, KKM Theorem and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999.

Byung-Soo Lee Department of Mathematics Kyungsung University Busan 608-736, Korea *E-mail address*: bslee@ks.ac.kr

M. FIRDOSH KHAN S.S. SCHOOL (BOYS) ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address:* khan\_mfk@yahoo.com

SALAHUDDIN DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH-202002, INDIA *E-mail address:* salahuddin12@mailcity.com