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VECTOR F -COMPLEMENTARITY PROBLEMS
WITH g-DEMI-PSEUDOMONOTONE MAPPINGS

IN BANACH SPACES

Byung-Soo Lee, M. Firdosh Khan, and Salahuddin

Abstract. In this paper, a class of g-demi-pseudomonotone mappings is

introduced and the solvability of a class of generalized vector F -complementarity
problems with the mappings in Banach spaces is considered.

1. Introduction and Preliminaries

In the past years, many important generalizations of monotonicity such as
quasi monotonicity, pseudo-monotonicity, dense-pseduomonotonicty and semi-
monotonicity have been introduced to study the various classes of variational
inequalities and complementarity problems [7, 9, 11-14].

In particular, Chen [1] introduced a class of variational inequalities with
semi-monotone single-valued mappings, which are continuous in the first vari-
able and monotone in the second variable. In 2003, Fang and Huang [5] con-
sidered a class of variational-like inequalities with generalized semi-monotone
single-valued mappings. For the cases of set-valued mappings, Kassay and
Kolumban [10] considered variational inequalities with semi-pseudomonotonicity,
and Kang et al. [8] considered variational-like inequalities with generalized
semi-pseudomonotonicity.

On the other hand, Fang and Huang [4] also considered the vector F -
complementarity problems with demi-pseudomonotone single-valued mappings,
which are vector demicontinuous in the first variable and pseudomonotone in
the second variable.

In this paper, we consider the generalized vector F -complementarity prob-
lems which generalizing the vector F -complementarity problems considered by
Fang and Huang, by adding a continuous convex mapping g as finding u ∈ K
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such that

〈A(u, u), g(u)〉+ F (g(u)) 6> 0

〈A(u, u), g(v)〉+ F (g(v)) 6< 0, for v ∈ K,

where A : K ×K → L(X,Y ), F : K → Y and g : K → K are mappings for a
subset K of a reflexive Banach space X, an ordered Banach space (Y,≤) and
a collection L(X,Y ) of continuous linear mappings from X into Y .

Definition 1.1. Let (Y, C) be an ordered Banach space, where C is a pointed
(i.e., C ∩ {−C} = {0}) closed convex cone with a nonempty interior int C.
With C we define the order relations ≥, 6≥, < and 6< as follows;

x ≥ y ⇔ x− y ∈ C,

x 6≥ y ⇔ x− y 6∈ C,

x < y ⇔ y − x ∈ int C,

x 6< y ⇔ y − x 6∈ int C for x, y ∈ Y.

Definition 1.2. A mapping T : K → L(X, Y ) is said to be hemicontinuous if
for any fixed x, y ∈ K, the mapping t→ 〈T (x + t(y − x)), y − x〉 is continuous
at 0+.

Definition 1.3. Let g : K → K be a single-valued mapping, T : K → L(X, Y )
and F : K → Y two nonlinear mappings. T is said to be g-pseudomonotone
with respect to F if for x, y ∈ K,

〈T (x), g(y)− g(x)〉+ F (g(y))− F (g(x)) 6< 0

implies 〈T (y), g(y)− g(x)〉+ F (g(y))− F (g(x)) ≥ 0.

Definition 1.4. A mapping G : K ⊂ X → 2X is said to be a KKM mapping if

for any finite set {x1, x2, . . . , xn} ⊂ K, Co{x1, x2, . . . , xn} ⊂
n⋃
i=1

G(xi), where

2X denotes the family of all nonempty subsets of X.

Definition 1.5. A mapping f : K → Y is said to be convex if f(tx+(1−t)y) ≤
tf(x) + (1− t)f(y) for x, y ∈ K and t ∈ [0, 1].

F-KKM Theorem ([3]). Let M be a nonempty subset of a Hausdorff topo-
logical vector space E and G : M → 2E be a KKM mapping. If G(x) is closed
in E for every x ∈M and compact for some x ∈M then⋂

x∈M
G(x) 6= ∅.

Lemma 1.1. ([1]) Let (Y,≤) be an ordered Banach space induced by a pointed
closed convex cone C with nonempty int C. For a, b, c ∈ Y , the following
unifications hold:

c 6< a and a ≥ b implies b 6> c,

c 6> a and a ≤ b implies b 6< c.
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2. Main results

First we consider the equivalence of Stampacchia-type of g-pseudomonotone
vector variational inequalities and Minty-type of g-pseudomonotone vector vari-
ational inequalities, and then the existences of solutions to them mentioned.

Next we consider the existences of solutions to the more generalized vector
F -complementarity problems with g-demi-pseudomonotone mappings.

In this paper, K is a bounded closed and convex subset of a real reflexive
Banach space, (Y,≤) an ordered Banach space induced by a pointed closed
convex cone C with intC 6= ∅ and L(X, Y ) the space of all the continuous
linear mappings from X into Y .

Theorem 2.1. Let T : K → L(X, Y ) be a hemicontinuous mapping, g : K →
K and F : K → Y two convex mappings. Suppose that T is g-pseudomonotone
with respect to F . Then for any given point x0 ∈ K, the following are equivalent

(i) 〈T (x0), g(x)− g(x0)〉+ F (g(x))− F (g(x0)) 6< 0 for x ∈ K;
(ii) 〈T (x), g(x)− g(x0)〉+ F (g(x))− F (g(x0)) ≥ 0 for x ∈ K.

Proof. We only prove that (ii) implies (i), the converse is obvious by Definition
1.3.

Suppose that (ii) holds. For any given x ∈ K and t ∈ (0, 1), let xt =
x0 + t(x− x0) then it follows from the convexities of g and F that

t〈T (x0 + t(x− x0)), g(x)− g(x0)〉+ t(F (g(x))− F (g(x0)))

≥ 〈T (x0 + t(x− x0)), t(g(x)− g(x0))〉+ F (g(tx + (1− t)x0))− F (g(x0))
≥ 0.

Hence

〈T (x0 + t(x− x0)), g(x)− g(x0)〉+ F (g(x))− F (g(x0)) ≥ 0.

Since T is hemicontinuous and C is closed, letting t→ 0+ in the above inequal-
ity, we have

〈T (x0), g(x)− g(x0)〉+ F (g(x))− F (g(x0)) ≥ 0.

Hence

〈T (x0), g(x)− g(x0)〉+ F (g(x))− F (g(x0)) 6< 0 for x ∈ K.
�

Theorem 2.2. Let g : K → K, F : K → Y be continuous convex mappings
and T : K → L(X, Y ) a hemicontinuous mapping.

If T is g-pseudomonotone with respect to F , then there exists x ∈ K such
that

〈T (x), g(y)− g(x)〉+ F (g(y))− F (g(x)) 6< 0 for y ∈ K.

Proof. Define two set-valued mappings G1, G2 : K → 2K as follows:

G1(z) = {x ∈ K : 〈T (x), g(z)− g(x)〉+ F (g(z))− F (g(x)) 6< 0}
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and

G2(z) = {x ∈ K : 〈T (z), g(z)− g(x)〉+ F (g(z))− F (g(x)) ≥ 0}.

Then G1 is a KKM mapping. In fact, if it is not, then there exist {x1, . . . , xn} ⊂
K, x =

n∑
i=1

tixi with ti > 0 and
n∑
i=1

ti = 1 such that x 6∈
n⋃
i=1

G1(xi). It follows

that

〈T (x), g(xi)− g(x)〉+ F (g(xi))− F (g(x)) < 0, i = 1, . . . , n.

By the convexities of F and g, we have

0 = 〈T (x), g(x)− g(x)〉+ F (g(x))− F (g(x))

≤
n∑
i=1

ti〈T (x), g(xi)− g(x)〉+
n∑
i=1

tiF (g(xi))− F (g(x))

=
n∑
i=1

ti

[
〈T (x), g(xi)− g(x)〉+ F (g(xi))− F (g(x))

]
< 0.

Hence 0 ∈ int C, which derives a contradiction. Thus G1 is a KKM mapping.
On the other hand, since T is g-pseudomonotone with respect to F , G1(z) ⊂
G2(z) for z ∈ K and so G2 is also a KKM mapping. Also since K is bounded
closed and convex, K is weakly compact. Furthermore, it is easy to check that
G2(z) ⊂ K is closed and convex because F and g are continuous and convex.
Hence G2(z) is weakly compact for each z ∈ K. It follows from F-KKM
Theorem and Theorem 2.1 that⋂

z∈K
G1(z) =

⋂
z∈K

G2(z) 6= ∅.

Thus there exists x ∈ K such that

〈T (x), g(y)− g(x)〉+ F (g(y))− F (g(x)) 6< 0 for y ∈ K.

�

Definition 2.1. Let g : K → K be a single-valued mapping, A : K × K →
L(X, Y ) and F : K → Y two nonlinear mappings. A is said to be g-demi-
pseudomonotone with respect to F if the following two conditions hold;

(a) for each fixed u ∈ K, A(u, ·) is g-pseudomonotone with respect to F .
That is,

〈A(u, x), g(y)− g(x)〉+ F (g(y))− F (g(x)) 6< 0

implies

〈A(u, y), g(y)− g(x)〉+ F (g(y))− F (g(x)) ≥ 0 for x, y ∈ K.
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(b) for each fixed v ∈ K, A(v, ·) is vector demicontinuous, that is, for any
net {uα} ⊂ K and w ∈ X, {uα} converges to u0 in the weak topology
of X implies that 〈A(uα, v), w〉 converges to 〈A(u0, v), w〉 in the norm
topology of Y .

Definition 2.2. A mapping F : K → Y is said to be completely continuous if
for any net {uα} ⊂ K, {uα} converges to u0 in the weak topology implies that
F (uα) converges to F (u0) in the norm topology.

Theorem 2.3. Let K ⊂ X be a nonempty bounded closed and convex set,
F : K → Y a completely continuous and convex mapping and g : K → K a
continuous and convex mapping. Suppose that

(i) A is g-demi-pseudomonotone with respect to F ;
(ii) for each x ∈ K, A(x, ·) : K → L(X, Y ) is finite dimensional continu-

ous, i.e., for any finite dimensional subspace D ⊂ X, A(x, ·) : K∩D →
L(X, Y ) is continuous. Then there exists u ∈ K such that

〈A(u, u), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0 for v ∈ K.

Proof. Let D ⊂ X be a finite-dimensional subspace with KD = D ∩ K 6= ∅.
For each w ∈ K, consider the following problem:

Find u0 ∈ KD such that

〈A(w, u0), g(v)− g(u0)〉+ F (g(v))− F (g(u0)) 6< 0 for v ∈ KD. (2.1)

Since KD ⊂ D is bounded closed and convex, A(w, ·) is continuous on KD

and g-pseudomonotone with respect to F for each fixed w ∈ K, from Theorem
2.2, we know that problem (2.1) has a solution u0 ∈ KD.

Now we define a set-valued mapping T : KD → 2KD as follows:

T (w) ={u ∈ KD : 〈A(w, u), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0 for v ∈ KD},
for w ∈ KD.

By Theorem 2.1, for each fixed w ∈ KD,

{u ∈ KD : 〈A(w, v), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0 for v ∈ KD}
= {u ∈ KD : 〈A(w, v), g(v)− g(u)〉+ F (g(v))− F (g(u)) ≥ 0 for v ∈ KD}.

Since F is completely continuous and convex, it follows that T : KD → 2KD

has nonempty bounded closed and convex values. We also know that T is
upper semicontinuous by the vector demicontinuity of A(·, u). By using the
Glicksberg fixed point theorem [6], T has a fixed point w0 ∈ KD, i.e.,

〈A(w0, w0), g(v)− g(w0)〉+ F (g(v))− F (g(w0)) 6< 0 for v ∈ KD. (2.2)

Let D = {D ⊂ X: D is a finite-dimensional subspace with D ∩K 6= ∅} and

WD = {u ∈ K : 〈A(u, v), g(v)− g(u)〉+ F (g(v))− F (g(u)) ≥ 0 for v ∈ KD}
for D ∈ D.
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By (2.2) and Theorem 2.1, we know that WD is nonempty and bounded.
Then the weak closure cl(WD) of WD is weakly compact in D.

For any Di ∈ D, i = 1, 2, . . . , n, we know that WS
i
Di
⊂ ∩WDi

. So {cl(WD) :

D ∈ D} has the finite intersection property. It follows that⋂
D∈D

cl(WD) 6= ∅.

Let u ∈
⋂
D∈D

cl(WD). We claim that

〈A(u, u), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0 for v ∈ K.

Indeed, for each v ∈ K, let D ∈ D be such that v ∈ KD and u ∈ KD. Since
WD is weakly closed there exists a net {uα} ⊂ WD such that {uα} converges
to u with respect to the weak topology of X. It follows that

〈A(uα, v), g(v)− g(uα)〉+ F (g(v))− F (g(uα)) ≥ 0.

It follows that

〈A(u, v), g(v)− g(u)〉+ F (g(v))− F (g(u)) ≥ 0 for v ∈ K,

by the vector demicontinuity of A(·, v) and the continuities of F and g. By
Theorem 2.1, we know

〈A(u, u), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0 for v ∈ K.
�

Theorem 2.4. Suppose that K is a nonempty closed convex cone and all the
conditions of Theorem 2.3 hold. Furthermore, if g(0) = 0 and F (0) = 0, then
there exists u ∈ K such that

〈A(u, u), g(u)〉+ F (g(u)) 6> 0 and

〈A(u, u), g(v)〉+ F (g(v)) 6< 0 for v ∈ K.

Proof. By Theorem 2.3, there exists u ∈ K such that

〈A(u, u), g(v)− g(u)〉+ F (g(v))− F (g(u)) 6< 0, for v ∈ K. (2.3)

Since g(0) = 0 and F (0) = 0, we have

〈A(u, u), g(u)〉+ F (g(u)) 6> 0.

On the other hand, any w ∈ K, substituting v = u + w into (2.3), we have

〈A(u, u), g(u + w)− g(u)〉+ F (g(u + w))− F (g(u)) 6< 0.

Since g and F are convex,

g(u + w) ≤ g(u) + g(w)
and

F (g(u + w)) ≤ F (g(u) + g(w)) ≤ F (g(u)) + F (g(w))
It follows Lemma 1.1, that

〈A(u, u), g(w)〉+ F (g(w)) 6< 0 for w ∈ K. �
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Remark 2.1. By putting g = I, the identity in Theorems 2.1, 2.2, 2.3 and 2.4,
we obtain the corresponding results in Fang and Huang [4].
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