Evaluation of Behavior of Composite Single Lap Joints with Different Finite Element Models

유한요소 모델에 따른 복합재 단일겹치기 접착 조인트부의 거동 평가

  • 김정석 (한국철도기술연구원 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원 철도구조연구실) ;
  • 황재연 (한국철도기술연구원 철도구조연구실) ;
  • 윤지유 (한국철도기술연구원 철도구조연구실) ;
  • 이승훈 (한국철도기술연구원 철도구조연구실)
  • Received : 2010.07.15
  • Accepted : 2010.11.06
  • Published : 2010.12.06

Abstract

In this paper, the strain distribution of the bond layer has been compared with the experimental data and analyzed according to the different mesh refinements and element types. The mesh density was changed along the longitudinal direction of adherend, the longitudinal direction of overlapped region, the vertical direction of adherend, the vertical direction of adhesive and the width direction of the joint. In addition, the effect of the different types of element was evaluated using soild, shell and plane strain element. The geometric nonlinear analysis was performed to consider the large deformation of the joint. From the numerical result, at least 2 elements were needed to achieve a reliable result as the solid element used. In case of shell element, the peel strain at x/c=1 showed 22.8% error compared with the experiment but the shear strain showed a good agreement with the experiment within 1.67% error.

본 연구에서는 단일겹치기 접착 체결부에 대한 유한요소해석을 통해 요소의 조밀도 및 유한요소의 종류에 따른 접착 층의 변형률 분포를 Tsai의 시험치 와 비교하여 분석하였다. 이를 위해 접합부재의 길이방향, 접착체결부의 길이방향, 접합부재의 두께방향, 접착 층의 두께방향 및 조인트의 폭방향의 요소 조밀 도를 변화시켰다. 또한, 솔리드, 쉘 및 평면 변형률 요소에 따른 효과도 분석하였다. 해석은 단일 겹치기 접착 체결부의 대변형을 고려하기 위한 기하학적 비선형 해석을 수행하였다. 이를 통해 솔리드 요소를 적용할 경우 접착부재의 길이방향으로의 요소 수는 최소 2개 이상이면 해석의 신뢰도를 확보할 수 있음을 확인할 수 있었다. 쉘 요소의 겨우 x/c=1에서 수직 변형률의 시험결과와 22.8%의 오차를 보였으나, 전단응력의 경우에는 1.67%로 시험치와 거의 일치하였다.

Keywords

References

  1. C.S. Ban, Y H. Lee, J.H Choi, J.H, Kwon (2008) Strength prediction of adhesive joints using the modified damage zone theory, Composite Structures, Vol. 86, pp. 96-100. https://doi.org/10.1016/j.compstruct.2008.03.016
  2. Z.Y. Wang, L. Wang, W. Guo, H. Deng, J. W. Tong, F. Aymerich (2009) An investigation on strain/stress distribution around the overlap end of laminated composite single-lap joints, Composite Structures, Vol. 89, pp. 589-595. https://doi.org/10.1016/j.compstruct.2008.11.002
  3. J.V. Shenoy, I.A. Asgcroft, G.W. Critchlow, A.D. Crocombe, M. Abdel Wahab (2009) An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain, Int. J. Adhesion & adhesives, 29, pp. 361-371. https://doi.org/10.1016/j.ijadhadh.2008.07.008
  4. J.S. Kim, J.C. Jeong, S.I. Seo (2007) Durability evaluationb of a composite carbody for korean tilting train under repeated loadings, Journal of the Korean Society for Railway, Vol. 10, No. 1, pp. 39-44.
  5. M.Y. Tsai and J. Morton (1995) The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints, Composite Structures, Vol. 32, pp. 123-131. https://doi.org/10.1016/0263-8223(95)00059-3
  6. G.P. Zou, K. Shahin, F. Taheri (2004) An analytical solution for the analysis of symmetric composite adhesively bonded joints, Composite Structures, Vol. 65, pp. 499-510. https://doi.org/10.1016/j.compstruct.2004.01.007
  7. Q. Luo, L. Tong (2009) Analytical solutions for nonlinear analysis of composite single-lap adhesive joints, Int. J. Adhesion & adhesives, 29, pp. 144-154. https://doi.org/10.1016/j.ijadhadh.2008.01.007
  8. G. Li, P. Lee-Sullivan, R.W. Thring (1999) Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints, Composite Structures, Vol. 46, pp. 395-403. https://doi.org/10.1016/S0263-8223(99)00106-3
  9. S.C. Her (1999) Stress analysis of adhesively-bonded lap joints, Composite Structures, Vol. 47, pp. 673-678. https://doi.org/10.1016/S0263-8223(00)00052-0
  10. ABAQUS 6.7-1, user manual, Simulia.