Comparative Study of Lumbar Magnetic Resonance Imaging and Myelography in Young Soldiers with Herniated Lumbar Disc

Suk-Hyung Kang, M.D.,* Seung Hong Choi, M.D., Ph.D.,† Nak Jong Seong, M.D.,‡ Jung Min Ko, M.D.,§ Eun-Suk Cho, M.D.,§ Kwang Pil Ko, M.D., Ph.D.¶

Department of Neurosurgical Surgery,† Chung-Ang University College of Medicine, Seoul, Korea
Departments of Neurosurgical Surgery,§ Radiology,¶ The Armed Forced Capital Hospital, Seoul, Korea
Division of Epidemiology and Health index,§ Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul, Korea

Objective: This study was undertaken to compare the diagnostic performances of magnetic resonance imaging (MRI), MR myelography (MRM) and myelography in young soldiers with a herniated lumbar disc (HLD).

Methods: Sixty-five male soldiers with HLD comprised the study cohort. A visual analogue scale for low back pain (VAS-LBP). VAS for leg radiating pain (VAS-LRP) and Oswestry disability index (ODI) were applied. Lumbar MR, MRM, and myelographic findings were checked and evaluated by four independent radiologists, respectively. Each radiologist was asked to score (1 to 5) the degree of disc protrusion and nerve root compression using modified grading systems devised by the North American Spine Society and Pfirrmann and the physical examination rules for conscription in the Republic of Korea. Correlated coefficients between clinical and radiological factors were calculated. Interpretational reproducibility between MRI and myelography by four bases were calculated and compared.

Results: Mean patient age was 20.5 ± 1.1. Mean VAS-LBP and VAS-LRP were 8.7 ± 1.6 and 7.4 ± 1.7, respectively. Mean ODI was 48.0 ± 16.2%. Mean MRT, MRM, and myelography scores were 3.3 ± 0.9, 3.5 ± 1.0, and 3.9 ± 1.1, respectively. All scores of diagnostic performances were significantly correlated (p < 0.05). However, none of these scores reflected the severity of patients' symptoms. There was no statistical difference of interpretational reproducibility between MRI and myelography.

Conclusion: Although MRI and myelography are based on different principles, they produce similar interpretational reproducibility in young soldiers with a HLD. However, these modalities do not reflect the severity of symptoms.

KEY WORDS: Comparison study • Herniated Lumbar Disc • Interpretational reproducibility • Magnetic Resonance Imaging • MR Myelography • Myelography.

INTRODUCTION

Magnetic resonance imaging (MRI), which replaced the myelography, is considered as a gold standard imaging method for the diagnosis of spinal disorders. However, in military medicine in the Republic of Korea, myelography also has been regarded as an important diagnostic tool. The purposes of this study were to compare MR and MR Myelography (MRM) with myelography to determine which would reflect better the patient state and to compare their interpretational reproducibility using diagnostic images in young soldiers with a herniated lumbar disc (HLD). The authors hoped that the results of such a study would help the military administration to devise patient management guidelines.

MATERIALS AND METHODS

From September 2007 to June 2008, 65 male in-patients with low back pain and associating leg radiating pain in one military hospital were enrolled in this study. All patients were male, in their early 20's, and soldiers. The patients with only low back pain, with an operative or pain intervention history,
with spondylolysis or spondylolysis, with a tumor, with an infection, or with a fracture owing to trauma were excluded.

Clinical findings of patients

Visual analogue scale (VAS) for lower back pain (LBP), VAS for leg radiating pain (LP) and the Oswestry disability index (ODI) were applied as measures of clinical severity.

Radiological factors

As radiological factors, lumbar MRI, MRM, and myelography were checked and evaluated by four independent radiologists. For MRI and MRM, 1.5 Tesla systems (GE and Siemens) were used.

Regarding MRI, all patients were studied using axial T1 (TR/TE/NEX/FA, 616.7/10.3 ms/1.0/90°) and T2 (TR/TE/NEX/FA, 3050/111.1 ms/1.0/90°)-weighted images, and sagittal T1 and T2-weighted spin-echo images of the lumbar and sacral spines using a 28 × 28 cm Field of View (FOV) and 4 mm slice thickness (ST).

For MRM, all patients were studied using coronal section T2 gradient echo images with a 28 × 28 cm FOV, 1.6 mm ST, TR 4.5, TE 1.3, FA 45°, NEX 5. For myelography, an Allura Xper FD-20 (Philips Medical Systems, Best, Netherlands) for angiography was used. Under the fluoroscope, 10 cc of water-soluble contrast (Visipaque®, GE Healthcare, Cork, Ireland) was injected into the intradural space of the L4/5 spinal canal. After 2-5 minutes in the sitting position, AP, lateral, and both oblique views were taken. Finally, cine images were taken for accurate evaluation.

According to nomenclature of North American Spine Society (NASS), the grading system of Pfirrmann and the physical examination rules for conscription in the Republic of Korea, which provide information on relations between the nerve root and the protruding disc, each of the four independent radiologists provided a grade from 1 to 5 by reviewing MRI, MRM, and myelography. Grade 1 was regarded as minimal root irritation, indicating disc bulging or protrusion without root irritation. Grade 5 represented as maximal root irritation, indicating complete root compression by the protrude disc materials. (Table 1, Fig. 1)

To compare the interpretational reproducibility of MRI, MRM, and myelography, four radiologists observed lumbar MRI, MRI, and myelography images, independently. The interpretational reproducibility was calculated and compared on the basis of four criteria; 1) The complete interobserver agreement rate (all interpretation were same), 2) concordant rate (more than 3 results were same), 3) one grade difference rate (all interpretational result were within 1 grade) and 4) standard deviation of interpretational scores. With these bases, interpretational reproducibility was compared; MRI versus myelography and MRI with MRM versus myelography.

Statistical analysis

Statistical analysis was performed using correlation coeffi-

<table>
<thead>
<tr>
<th>Score</th>
<th>MRI & MRM findings</th>
<th>Myelography findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disc bulging or protrusion without root contact</td>
<td>Thecal sac indentation without root contact and deviation</td>
</tr>
<tr>
<td>2</td>
<td>Disc bulging or protrusion with root contact</td>
<td>Thecal sac indentation with root contact but no deviation</td>
</tr>
<tr>
<td>3</td>
<td>Disc bulging or protrusion with root deviation</td>
<td>Thecal sac indentation with root deviation and no root compression</td>
</tr>
<tr>
<td>4</td>
<td>Disc bulging or protrusion with root compression and deviation, possible to decline root outline</td>
<td>Thecal sac indentation with partial root compression</td>
</tr>
<tr>
<td>5</td>
<td>Disc bulging or protrusion with complete root compression, impossible to decline root out line</td>
<td>Thecal sac indentation with complete root compression, showing positive cut-off sign</td>
</tr>
</tbody>
</table>

Fig. 1. Lumbar magnetic resonance imaging (MRI) findings based on the scoring system. A : Score 1 represents bulging or protrusion without root contact. High signal intensity around the root (arrow) implies no root irritation. B : Score 2 represents disc bulging or protrusion with root contact. The protruded disc contacts the root and the signal intensity around the root (arrow) is preserved. C : Score 3 represents disc bulging or protrusion with root deviation. Contrary to left, right root (arrow) is deviated, but the signal around the root is preserved. D : Score 4 represents disc bulging or protrusion with root compression and deviation. It is possible to decline root outline (arrow), which is compressed by protruded disc. E : Score 5 is represents disc bulging or protrusion with complete root compression. It is impossible to decline root out line (arrow), which is compressed by protruded disc.
coefficients (Spearman's rho), Pearson's chi-square test, and the paired-t test. Statistical significance was accepted for p values of <0.05.

RESULTS

The 65 patients were all male soldiers in their early 20s. Mean patient age was 20.5 (±1.1). Mean lower back and leg radiating VAS pain scores were 6.7 (±1.6) and 7.4 (±1.7), respectively. Mean ODI was 48.0 (±16.2)%. Mean MRI, MRM, and myelography scores were 3.3 ± 0.9, 3.5 ± 1.0 and 3.9 ± 1.1, respectively.

No significant correlation was found between radiological and clinical factors. However, MRI, MRM, and myelography diagnostic interpretations were found to be significantly related (p = 0.000) (Table 2).

Table 2. Correlation coefficients (Spearman's rho) between radiological and clinical factors

<table>
<thead>
<tr>
<th></th>
<th>AGE</th>
<th>VAS_LBP</th>
<th>VAS_LEG</th>
<th>ODI</th>
<th>MRI</th>
<th>MRM</th>
<th>Myelography</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>Correlation coefficient</td>
<td>-0.022</td>
<td>-0.094</td>
<td>0.130</td>
<td>-0.040</td>
<td>1.0</td>
<td>0.834</td>
</tr>
<tr>
<td>p-value</td>
<td>0.864</td>
<td>0.454</td>
<td>0.301</td>
<td>0.753</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>MRM</td>
<td>Correlation coefficient</td>
<td>-0.034</td>
<td>-0.081</td>
<td>0.232</td>
<td>0.025</td>
<td>0.834</td>
<td>1.0</td>
</tr>
<tr>
<td>p-value</td>
<td>0.786</td>
<td>0.520</td>
<td>0.063</td>
<td>0.842</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>CM</td>
<td>Correlation coefficient</td>
<td>-0.059</td>
<td>0.001</td>
<td>0.162</td>
<td>-0.097</td>
<td>0.746</td>
<td>0.826</td>
</tr>
<tr>
<td>p-value</td>
<td>0.639</td>
<td>0.992</td>
<td>0.197</td>
<td>0.443</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

MRI: magnetic resonance image, VAS: visual analogue scale, LBP: low back pain, LEG: leg pain, ODI: Oswestry disability index, CC: Correlation coefficient

Table 3. The results of interpretational reproducibility comparison between lumbar magnetic resonance imaging and myelography

<table>
<thead>
<tr>
<th>Standards</th>
<th>MRI</th>
<th>Myelography</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete interobserver agreement</td>
<td>4 (6.2%)</td>
<td>23 (35.4%)</td>
<td>0.087*</td>
</tr>
<tr>
<td>Agreement over 3 radiologic interpretations</td>
<td>30 (46.2%)</td>
<td>40 (61.5%)</td>
<td>0.194*</td>
</tr>
<tr>
<td>Disagreement within 1 grade difference</td>
<td>35 (53.8%)</td>
<td>39 (55.4%)</td>
<td>0.128*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.74 ± 0.37</td>
<td>0.62 ± 0.58</td>
<td>0.098*</td>
</tr>
</tbody>
</table>

*Inter-group statistical significances were tested using Pearson's chi-square test; Statistical significances were determined using the paired-t test

Table 4. The results of interpretational reproducibility comparison between lumbar magnetic resonance imaging with MR myelogram and myelography

<table>
<thead>
<tr>
<th>Standards</th>
<th>MRI + MRM</th>
<th>Myelography</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete interobserver agreement</td>
<td>11 (16.9%)</td>
<td>23 (35.4%)</td>
<td>0.443*</td>
</tr>
<tr>
<td>Agreement over 3 radiologic interpretations</td>
<td>31 (47.7%)</td>
<td>40 (61.5%)</td>
<td>0.326*</td>
</tr>
<tr>
<td>Disagreement within 1 grade difference</td>
<td>43 (66.1%)</td>
<td>39 (55.4%)</td>
<td>0.087*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.62 ± 0.39</td>
<td>0.62 ± 0.58</td>
<td>0.992*</td>
</tr>
</tbody>
</table>

*Inter-group statistical significances were tested using Pearson's chi-square test; Statistical significances were determined using the paired-t test. MRI: magnetic resonance image, MRM: magnetic resonance myelography

DISCUSSION

Many patients suffer from lower back pain and associated radiating leg pain and this situation is not different in military medicine. Because of the various compensations in military medical situation, radiological findings are sometimes regarded as being more important than clinical findings, although radiological findings are not always correlated with clinical findings. According to Military Manpower Administration, spinal disorders are not considered as a major disease for recruitment drafting systems. Currently, 26,000 individuals are performing a Public Interest Service as an alternative to military service, and of these about 700 are spinal patients. However, according to the Ministry of National Defense, about 4,000 young men are discharged from military service annually due to illness. Of these, 35% have a spinal disorder and herniated lumbar disc (HLD) is the most commonly encountered disease entity. Unfortunately, there are many cases of second gain which includes worker's compensation. We thought this is the reason why radiological findings are regarded more importantly than clinical symptoms in military medicine and Physical Examination System prior to conscription.

According to the physical examination rules for conscription in the Republic of Korea, physical state is divided into 6 groups and last two of these groups are exempted from enlistment. In cases with a spinal degenerative disease, three types warrant discharge from military service. These are: 1) a neurological emergent state and its sequelae, such as, cauda equina syndrome or foot drop; 2) spinal stenosis affecting more than 50% of the spinal canal; and 3) intervertebral disc
disease showing complete root compression by a herniated lumbar disc. Myelography is regarded as an important diagnostic tool in military medicine. Since most of spinal diseases in military medicine are HLD, myelography is sometimes regarded as a better diagnostic performance without any evidence.

In this study, we used a 5-score system to evaluate the relationship between root and extruded disc materials, some part of the physical examination rules for conscription in the Republic of Korea was applied for the scoring system (Table 1). Basically, it was assumed that this grade could reflect the severity of HLD. Radiologic findings, however, could not reflect the clinical severity although such radiologic findings would be judged more objectively rather than clinical findings.

Due to on-going improvements in diagnostic performance, new diagnostic procedures are continuously replacing established procedures. For the diagnosis of spinal disorders, MRI and MRM are replacing myelography, because they are believed to be superior in terms of visualizing invasiveness and complications. However, myelography is still performed, for example, for diagnostic purposes in patients with an implanted cardioverter-defibrillator contraindicating magnetic resonance imaging. In contrast to ferromagnetic artifact of MRI, myelography produces high quality images in the presence of metallic implants like pedicle screws. Furthermore, although there is no evidence, myelography is sometimes preferred due to contrast’s physical characteristics, specific gravity, which may also evoke clinical symptoms, such as, radiculopathy after migrating under gravity.

At the beginning of this study, we assumed that myelography was more accurate than MRI or MRM, and that it reflected better the symptomatic severity. This was because the fact that MRI and MRM provide static images, whereas myelography provides dynamic images by utilizing the high specific gravity of water soluble contrast, and is considered to be a type of provocation study. In the view of interpretational reproducibility, myelography is supposed to be better than MRI. To compare the interpretational reproducibility, we used four standards. We expressed complete interobserver agreement as in cases of all interpretations were same, which we thought was the most ideal and desirable. To gain more strong evidence, we used other statistical methods which would be able to reflect the interpretational reproducibility; concordant rate (more than 3 results were same), one grade difference rate (all interpretational result were within 1 grade) and standard deviation of interpretational scores. However, in this study there was no difference in the aspect of neither clinical correlations nor interpretational reproducibility.

Regarding MRI and MRM, their less invasive natures, low complication rates, and high inter-observer agreements are strong points as compared with myelography. However, there are different opinions about MRM, which is less accurate. Myelography is good radiologic method for the evaluation of spinal disease, especially in specific conditions. However, it is invasive and has possible complications. The present study shows that all three modalities produce similar results, regardless the standards. The results of the present study also show significant relationships between the three in terms of radiologic performance. MRI with MRM can replace myelography, especially for the diagnosis of young adults with a spinal disorder. In terms of interpretational reproducibility, this study also shows that MRI and MRM are equivalent to myelography.

There are several limitations in this present study. All pati-
ments were male, soldiers, in-patients and young adults. The number of participants was small in number, being 65, and it was retrospective. However, cross-sectional studies in military medicine have some unique strong points, for example in the present study, all patients were males in their early 20s, and soldiers, and the lack of potential confusing factors added to the power of the statistical analysis.

CONCLUSION

Although MRI, MRM, and myelography are based on different physical principles, they produce similar results in terms of diagnosis performance in young soldiers with HLD. None of these three modalities reflected symptom severity and no one technique was superior to the others in terms of interpretation. The authors believe that the results of this study could help the military administration to produce a better patient management guidelines.

References