Immobilization of Bacillus sp. Strains, Catalase Producing Bacteria and Their Hydrogen Peroxide Removal Characteristics

카탈라제를 생산하는 고초균 (Bacillus sp.)의 고정화 및 과산화수소 분해 특성

  • Han, Kyung-Ah (Department of Material and Biochemical Engineering, Chonnam National University) ;
  • Jang, Yun-Hee (Department of Advanced Chemicals, Chonnam National University) ;
  • Rhee, Jong-Il (School of Applied Chemical Engineering, Chonnam National University)
  • 한경아 (전남대학교 물질.생물화학공학과) ;
  • 장윤희 (전남대학교 신화학소재공학과) ;
  • 이종일 (전남대학교 응용화학공학부)
  • Received : 2010.09.29
  • Accepted : 2010.12.02
  • Published : 2010.12.31

Abstract

In this work we have investigated the production of catalase from Bacillus sp. strains, which were screened and identified from soil. These strains were cultivated in shaking flasks with tryptic soy broth (TSB) at $30^{\circ}C$ and 200 rpm. Effects of the temperature and pH on the stability of the native catalase and whole cell viability were studied in the temperature range of $25-60^{\circ}C$ and the pH range of 7-13. Korean natural zeolite was added to culture medium and mixed with microorganisms for 24 hours. The native catalase maintained its activity over $50^{\circ}C$. The enzyme acitiviy of the catalase from Bacillus flexus BKBChE-3 was highest among the Bacillus sp. strains studied. Bacillus flexus BKBChE-3 and immobilized Bacillus cells have survived under extreme conditions of over $50^{\circ}C$ and pH 12. 60 mL of 10.5 mM $H_2O_2$ solution were entirely removed within 1 hour with catalase produced from Bacillus sp. on the flask. When Bacillus cells were immobilized on Korean natural zeolite, colony forming unit of Bacillus flexus BKBChE-3 was increased and high efficiency of hydrogen peroxide removal was observed.

토양 미생물로부터 스크리닝한 미생물 중 카탈라제 생산량이 높은 세 가지 미생물 (Bacillaceae bacterium BKBChE-1, Bacillus sp. BKBChE-2와 Bacillus flexus BKBChE-3)을 배양하여 얻은 카탈라제 효소가 과산화수소를 분해하는 것을 확인하고, 미생물 균체를 천연제올라이트에 정전기적 흡착법으로 고정하였다. 주사전자 현미경을 통해 각각의 미생물이 지지체에 잘 흡착된 것이 관찰되었고, 10.5 mM의 과산화수소를 1시간 이내에 완전히 분해되는 것을 확인하였다. 과산화수소 분해 속도가 가장 빠른 Bacillus flexus BKBChE-3은 온도와 pH 영향성 실험을 통해 고온과 pH 10 이상의 강알칼리 조건에서도 30일 이후까지 미생물이 생존하는 것을 관찰하였다. 또한 고정화된 미생물의 경우 온도 $25-40^{\circ}C$, pH 7-10의 조건에서 생균수가 계속하여 증가하는 것을 확인하였다. 본 실험을 통해 Bacillus flexus BKBChE-3이 생산한 카탈라제 효소 뿐만 아니라 고정화된 균체도 과산화수소의 제거에 효과적임을 확인할 수 있었다. 이들 결과로부터 미생물 발효를 통해 생산된 효소의 생산량 증가와 미생물 개체 수 증가를 이용하여 산업폐수에 적용하면, 과산화수소의 제거 효율을 높이고 균체 재활용을 통한 공정비용을 절감할 수 있을 것으로 사료된다.

Keywords

References

  1. Murthy, M. R. N., T. J. III. Reid, A. Sicignano, N. Tanaka, and M. G. Rossmann (1981) Structure of beef liver catalase. J. Mol. Biol. 152: 465-499. https://doi.org/10.1016/0022-2836(81)90254-0
  2. Heo, B. O., D. C. Lee, and H. J. Shin (2003) Catalase production by membrane process for treatment of industrial wastewater containing hydrogen peroxide. Korean J. Biotechnol. Bioeng. 18: 186-189.
  3. Dwight, L. B. (1953) Production of catalase from mold. US Patent 2,605,069.
  4. Hans, E. D. (1961) Method of extracting catalase from liver. US Patent 2,992,167.
  5. Yang, H. S., H. C. Yang, and Y. Tani (1988) Catalase from Aspergillus niger KUF-04. Korean J. Appl. Microbiol. Bioeng. 16: 193-198.
  6. Yu, S.-J., S.-Y. Yu, and K.-Y. Lee (2001) Influence of algitation speed on cell growth in the aerobic yeast fermentation of pulverized liquid food waste for probiotic feed production. J. KOWREC. 9: 99-104.
  7. Shinonaga, M.-A., K. Yoshihide, S. Kikuo, and Y. Tsuneo (1996) Continuous production of phospholipase D by Streptomyces lydicus D-121 immobilized with cross-linked chitosan bead. J. Ferment. bioeng. 81: 310-314. https://doi.org/10.1016/0922-338X(96)80582-4
  8. Cetinus, S. A. and H. N. Oztop (2000) Immobilization of catalase on chitosan film. Enzyme Microb. Technol. 26: 497-501. https://doi.org/10.1016/S0141-0229(99)00189-1
  9. Costa, S. A., T. Tzanko, P. Andreas, G. Marinka, M. G. Georg, and C.-P. Artur (2001) Immobilization of catalase from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme Microb. Technol. 28: 815-819. https://doi.org/10.1016/S0141-0229(01)00335-0
  10. Hidalgo, A., B. Lorena, L.-G. Fernando, M. Renata, B. José, F.-L. Foberto, and H. G. José (2003) Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions. structural stabilization of a multimeric enzyme. Enzyme Microb. Technol. 33: 278-285. https://doi.org/10.1016/S0141-0229(03)00129-7
  11. Çetinus, S. A. and O. H. Nursevin (2003) Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme Microb. Technol. 32: 889-894. https://doi.org/10.1016/S0141-0229(03)00065-6
  12. Norton, S. and T. D'Amore (1994) Physiological effects of yeast cell immobilization : application for brewing. Enzyme Microb. Technol. 16: 365-375. https://doi.org/10.1016/0141-0229(94)90150-3
  13. Park, J. K. and H. N. Chang (2000) Microencapsulation of microbial cells. Biotechnol. Adv. 18: 301-319.
  14. Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas (2004) Immobilization technologies and support materials suitable in alcohol beverages production : a review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  15. Kim, K., K.-I. Jang, C.-H. Kim, and K.-Y. Kim (2002) Optimization of culture conditions and encapsulation of Lactobacillus fermentum YL-3 for probiotics. Korean J. Food Sci. Technol. 34: 255-262.
  16. Kourkoutas, Y., A. Bekatorou and A. A. Koutinas (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  17. Kam, S.-K., D.-S. Kim, and M.-G. Lee (1999) Comparison of removal performances of divalent heavy metals by natural and pretreated zeolite. J. Korean Environ. Sci. Soc. 8: 399-409.
  18. Han, K.-A. and J. I. Rhee (2009) Isolation and characterization of catalase-producing bacteria from soil. Korean J. Biotechnol. Bioeng. 24: 508-514.
  19. Mo, S.-Y., H.-K. Chang, K.-J. Lee, G.-E. Jang, and J.-R. Sohn (2000) Measurement of the quantity of hydrogen peroxide produced in the ultrasound-irradiated aqueous solution of organic compounds. J. Korean Soc. Environ. Eng. 22: 61-71.
  20. Lee, D. H., S. J. Kim, and H. Moon (1999) Preparation of a clinoptilolite-type korean natural zeolite. Korean J. Chem. Eng. 16: 525-531. https://doi.org/10.1007/BF02698279
  21. Lee, S.-H., J.-H. Lee, D. G. Kim, C. S. Lee, K. S. Kang, and I. H. Kim (2008) Simultaneous removal of ammonium and nitrate by natural zeolite and bacteria. Korean Chem. Eng. Res. 40: 971-976.
  22. Nakamura, H., K. Samejima, and T. Zenzo (1974) A capillary tube method for counting viable cells of Bifidobacterium bifidum growth in a solid medium. Japan J. Microbiol. 18:135-138. https://doi.org/10.1111/j.1348-0421.1974.tb00801.x
  23. Zweifel, C., J. E. Muehlherr, M. Ring, and R. Stephan (2005) Influence of different factors in milk production on standard plate count of raw small ruminant's bulk-tank milk in Switzerland. Small Rumin. Res. 58: 63-70. https://doi.org/10.1016/j.smallrumres.2004.09.003
  24. Costa, S. A., T. Tzanov, A. F. Carneiro, A. Paar, G. M. Gὕbitz, and A. C. Paulo (2002) Studies of stabilization of native catalase using additives. Enzyme Microb. Technol. 30: 387-391. https://doi.org/10.1016/S0141-0229(01)00505-1
  25. (2001) Treatment of seafood wastewater by intermittently aerated activated sludge system with zeolite addition. J. Korean Ind. Eng. Chem. 12: 410-414.
  26. Lee, H. S.(2002) Wastewater treatment in a hybrid biological reactor using powered minerals: effects of organic loading rates on COD removal and nitrification. Process Biochem. 38: 81-88. https://doi.org/10.1016/S0032-9592(02)00044-4