DOI QR코드

DOI QR Code

Characterizations of CuInGaSe(CIGS) mixed-source and the thin film

CuInGaSe(CIGS)혼합 소스의 제작과 특성

  • Lee, Ah-Reum (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Jeon, Hun-Soo (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Lee, Gang-Suok (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Ok, Jin-Eun (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Cho, Dong-Wan (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Kim, Kyung-Hwa (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Yang, Min (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Yi, Sam-Nyeong (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Ahn, Hyung-Soo (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Cho, Chae-Ryong (Department of Nanomedical Engineering, Pusan National University) ;
  • Son, Sang-Ho (Department of Physics Education, Kyungpook National University) ;
  • Ha, Henry (CSsol Co. Ltd)
  • 이아름 (나노반도체공학과, 한국해양대학교) ;
  • 전헌수 (나노반도체공학과, 한국해양대학교) ;
  • 이강석 (나노반도체공학과, 한국해양대학교) ;
  • 옥진은 (나노반도체공학과, 한국해양대학교) ;
  • 조동완 (나노반도체공학과, 한국해양대학교) ;
  • 김경화 (나노반도체공학과, 한국해양대학교) ;
  • 양민 (나노반도체공학과, 한국해양대학교) ;
  • 이삼녕 (나노반도체공학과, 한국해양대학교) ;
  • 안형수 (나노반도체공학과, 한국해양대학교) ;
  • 조채용 (나노메디컬공학과, 부산대학교) ;
  • 손상호 (과학교육학부, 경북대학교) ;
  • 하홍주 (시스솔루션(주))
  • Published : 2010.02.28

Abstract

CuInGaSe(CIGS) mixed-source was prepared by hydride vapor phase epitaxy (HVPE). Each metal was mixed in regular ratio and soaked at $1090^{\circ}C$ for 90 minutes in nitrogen atmosphere. After making the mixed-source to powder state, the pellet was made by the powder. The diameter of pellet is 10 mm. The CIGS thin film was deposited on soda lime glass evaporated Mo layer bye-beam evaporator. To confirm the crystallization, we measured X-ray diffraction (XRD). High intensity X-ray peaks diffracted from (112), (204)/(220), (116)/(312) and (400) of CIGS thin film and from (110) of Mo were confirmed by XRD measurement.

혼합소스 hydride vapor phase epitaxy(HVPE) 방법으로 CuInGaSe(CIGS) 혼합 소스를 형성하였다. 각 금속들은 일정 비율로 혼합하였고, $1090^{\circ}C$에서 1시간 30분간 soaking 하였다. 혼합된 소스를 분말형태로 만든 후, 직경 10 mm 크기의 pellet을 만들었다. 시료는 혼합소스 HVPE 에서 소성 한 후 e-beam 으로 Mo이 증착된 기판 위에 증착하였다. Scanning electron microscope(SEM), Energy dispersive X-ray spectrum(EDS) 그리고 X-ray diffraction(XRD) 측정을 통하여 그 특성을 분석하였으며 박막의 특성은 (112), (204)/(220), (116)/(312)그리고 (400) 방향 등의 다결정 특성을 나타내었다.

Keywords

References

  1. M. Venkatachalam, M.D. Kannan, S. Jayakumar, R. Balasundaraprabgu and N. Muthukumarasamy, "Effect of annealing on the structural properties of electron beam deposited CIGS thin films", Thin Solid Films 516 (2008) 6848. https://doi.org/10.1016/j.tsf.2007.12.127
  2. A.M. Gabor, J.R. Tuttle, M.A. Contreras, D.S. Albin, A. Franz, D.W. Niles and R. Noufi, "High efficiency graded bandgap thin-film polycrystalline $Cu(In,Ga)Se_{2}$- based solar cells", European Photovoltaic Solar Energy Conf. 12 (1994) 1.
  3. A.M. Gabor and J. R. Tuttle, "Band-gap engineering 4 in $Cu(In,Ga)Se_{2}$ thin films grown from $(In, Ga)_{2}Se_{3}$ precursors", Solar Energy Materials and Solar Cells 41 (1996) 247. https://doi.org/10.1016/0927-0248(95)00122-0
  4. T. Walter and H.W. Schock, "Crystal growth and diffusion in $Cu(In,Ga)Se_{2}$ chalcopyrite thin films", Thin Solid Films 224 (1993) 74. https://doi.org/10.1016/0040-6090(93)90461-W
  5. A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi and A.M. Hermann, "High-efficiency $CuIn_{x}Ga_{1-x}Se_{2}$ solar cells made from $(In_{2}Ga_{1-x})_{2}Se_{3}$ precursor films", Appl. Phys. Lett. 65(2) (1994) 198. https://doi.org/10.1063/1.112670
  6. X. Donglin, L. Jangzhuang, X. Man and Z. Xiujian. "Electrodeposited and selenized CIGS thin films for solar cells", J. Non-Cryst. Sol. 354 (2008) 1447. https://doi.org/10.1016/j.jnoncrysol.2007.02.097
  7. T. Wada, N. Kohara, S. Mishiwaki and T. Negame, "Characterization of the Cu(In,Ga)$Se_{2}$/Mo interface in CIGS solar cells", Thin Solid Films 387 (2001) 118. https://doi.org/10.1016/S0040-6090(00)01846-0
  8. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G Bilger and lH. Werner, "High quality baseline for high efficiency, $Cu(In_{1-x},Ga_{x})Se_{2}$ solar cells", Prog. Photovolt. Res. Appl. 15 (2007) 507. https://doi.org/10.1002/pip.757
  9. M.A. Contreras, M.J. Romero and R. Noufi, "Characterization of $Cu(In,Ga)Se_{2}$ materials used in record performance solar cells", Thin Solid Films 511 (2006) 51. https://doi.org/10.1016/j.tsf.2005.11.097
  10. I. Repins, M.A Contreras, B. Egaas, C. DeHart, J. Schart, C.L. Rerkins, B. To and R. Noufi, "Short communication: Accelerated publication 19.9%-efficient $ZnO/Cds/CuInGaSe_{2}$ solar cell with 81.2% fill factor", Prog . Photovolt. Res. Appl. 16 (2008) 235. https://doi.org/10.1002/pip.822
  11. J.W. Park, Y.W. Choi, E. Lee, O.S. Joo, S. Yoon and B.K. Min, "Synthesis of CIGS absorber layers via a paste coating", J. Cryst. Growth 311 (2009) 2621. https://doi.org/10.1016/j.jcrysgro.2009.02.038
  12. O. Lundberg, J. Lu, A. Rockett, et aI., "Diffusion of indium and gallium in $Cu(In,Ga)Se_2$ thin film solar cells", J. Phys. Chern. Solids 64 (2003) 1499. https://doi.org/10.1016/S0022-3697(03)00127-6
  13. A. Goetzberger and C. Hebling, "Photovoltaic materials, past, present, future", Sol. Energ. Mater. Sol. Cells 62 (2000) 1. https://doi.org/10.1016/S0927-0248(99)00131-2
  14. H.K. Song, S.G Kim, H.J. Kim, et aI., "Preparation of $CuIn_{1-x}Ga_{x}Se_{2}$ thin films by sputtering and se1enization process", Sol. Energ. Mater. Sol. Cells 75 (2003) 145. https://doi.org/10.1016/S0927-0248(02)00125-3
  15. J. Kessler, C. Chityuttakan, J. Lu, J. Scholdstrom and L. Stolt, "$Cu(In,Ga)Se_{2}$ thin films grown with a Cu-poor/ rich/poor sequence: growth model and structural considerations", Prog. Photovolt. Res. Appl. 11 (2003) 319. https://doi.org/10.1002/pip.495
  16. M. Kemellm, M. Ritala and M. Keskela, "Thin film deposition methods for $CuInSe_{2}$ solar cells", Crit. Rev. Solid State Mater. Sci. 30 (2005) 1. https://doi.org/10.1080/10408430590918341
  17. M.A. Contreras, K. Ramanathan, J. AbuShanma, F. Hasoon, D.L. Young, B. Egaas and R. Noufi, "Short communication: Accelerated publication: Diode characteristics in state-of-the-art $ZnO/CdS/Cu(In_{1-x}Ga_{x})Se_{2}$ solar cells", Prog. Photovolt, Res. Appl. 13 (2005) 209. https://doi.org/10.1002/pip.626
  18. S. Chaisitsak, A. Yamada and M. Konagai, "Comprehensive study of light-soaking effect in $zno/cu(inga)se_{2}$ solar cells with Zn-based buffer layers", Jpn. J. Appl. Phys. 41 (2002) 507. https://doi.org/10.1143/JJAP.41.507
  19. J.C.W. Fiomer, J.A. Turner, R. Noufi and D. Cahen, "Structural and solar conversion characteristics of the $(Cu_{2}Se)_{x}(In_{2}Se_{3})_{1-x}$ system", J. ELectrochem. Soc. 132 (1985) 1319.