DOI QR코드

DOI QR Code

The crystallization behavior of glass made from coal bottom ash

석탄 바닥재로 제조된 유리의 결정화 거동 분석

  • Jang, Seok-Joo (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Advanced Materials Engineering, Kyonggi University)
  • 장석주 (경기대학교 신소재공학과) ;
  • 강승구 (경기대학교 신소재공학과)
  • Published : 2010.02.28

Abstract

The glass-ceramics made from the mixture of coal bottom ash, produced from a thermal power plant mixed with $Na_2O$ and $Li_2O$ was fabricated and their crystallization behavior was studied using a non-isothermal analyzing method. The temperature for 50% crystallization was higher than the exothermic peak temperature $T_p$ at DTA curve and the quickest crystallization temperature was much the same as $T_p$ as identified from the relationships of crystallized fraction and crystallization rate with temperature. By using Kissinger equation describing a crystallization behavior, the activation energy (262 kJ/mol), the Avrami constant (1.7) and the frequency ($5.7{\times}10^{16}/s$) for crystallization were calculated from which the nepheline crystal could be expected as showing an 1~2-dimensional surface crystallization behavior mainly with some bulk crystallization tendency at the same time. The actual observation of microstructure using SEM showed the considerable amount of surface crystals of dendrite and the bulk crystals with low fraction, so the prediction by the Kissinger equation was in accord with the crystallization behavior of glass-ceramics fabricated in this study.

화력 발전소에서 발생하는 석탄 바닥재에 $Na_2O$$Li_2O$가 첨가된 결정화 유리를 제조하고, 비등온 열분석법을 이용하여 결정성장 거동을 분석하였다. 온도에 따른 결정화 분율 및 결정화 속도 변화를 계산한 결과, 결정화가 50% 진행된 온도는 DTA 상의 결정 발열피크 $T_p$ 보다 약간 높게 나타났으며, 결정화가 가장 빠르게 진행되는 온도는 $T_p$와 거의 일치함을 알 수 있었다. Kissinger 식을 이용하여 결정화 활성화 에너지(262 kJ/mol), Avrami 상수 (1.7) 그리고 진동수 ($5.7{\times}10^{16}/s$)를 계산하였으며, 이로부터 nepheline 결정 성장은 주로 1~2 차원적 표면 결정화 경향을 보이지만, 동시에 내부 결정화도 어느 정도 나타날 것으로 예측되었다. 실제 미세구조 관찰에서 수지(dendrite)상의 표면 결정화가 상당히 일어났고 동시에 낮은 분율의 내부 결정도 생성된 것이 확인되어, Kissinger식에 의해 예측된 결과가 본 연구에서 제조된 결정화 유리의 거동과 일치함을 알 수 있었다.

Keywords

References

  1. C.T. Kniess, J.C. de Lima, P.B. Prates, N.C. Kuhnen and H.G Riella, "Dilithium dialuminium trisilicate phase obtained using coal bottom ash", J. Non-Cryst. Sol. 353 (2007) 4819. https://doi.org/10.1016/j.jnoncrysol.2007.06.047
  2. Carlos P. Bergmann, "Sinterability study of ceramic bodies made from a mixture of mineral coal bottom ash and soda-lime glass cullet", Waste Manage. Res. 25 (2007) 77. https://doi.org/10.1177/0734242X07069764
  3. A. Karamanov, M. Pelino and A. Hreglich, "Sintered glass-ceramics from municipal solid waste-incinerator fly ash-part I; the influence of the heating rate on the sinter crystallization", J. European Ceramic Society 23 (2003) 827. https://doi.org/10.1016/S0955-2219(02)00210-8
  4. T.W. Cheng, T.M. Ueng, Y.S. Chen and T.P. Chiu, "Production of glass-ceramic from incineration fly ash", Ceramics International 28 (2002) 779. https://doi.org/10.1016/S0272-8842(02)00043-3
  5. J.M. Rincon, M. Romero and A.R. Boccaccini, "Microstructural characterization of a glass and glass-ceramic obtained from municipal incinerator fly ash", J. Mater. Sci. 34 (1999) 4413. https://doi.org/10.1023/A:1004620818001
  6. T.W. Cheng, "Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes", Chemosphere 56 (2004) 127. https://doi.org/10.1016/j.chemosphere.2004.02.009
  7. W. Holand and G. Beall, "Glass-ceramic Technology", The American Ceramic Society, Ohio, USA (2002).
  8. N.M. Pavlushkin, "Principals of Glass Ceramics Technology", 2nd Ed., Stroiizdat, Moscow (1979).
  9. W.A. Johnson and K.F. Mehl, Trans. Am. lnst. Mining Eng. 135 (1981) 315.
  10. M. Avrami, "Granulation, phase change, and microstructure kinetics of phase change", J. Chem. Phys. 9 (1941) 177. https://doi.org/10.1063/1.1750872
  11. H. Yinnon and D.R. Uhlmann, "Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part 1: theory", J. Non-Cryst. Solids 54 (1983) 253. https://doi.org/10.1016/0022-3093(83)90069-8
  12. H.C. Park, S.H. Lee, B.K. Ryu, M.M. Son and I. Yasui, "Nucleation and crystallization kinetics of $CaO-AI_2O_3-2SiO_2$ in powdered anorthite glass", J. Mater. Sci. 31 (1996) 4249. https://doi.org/10.1007/BF00356446
  13. J. Vazquez, C. Wagner, P. Villares and R. Jimenez-Garay, "A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques", Acta Mater. 44 (1996) 4807. https://doi.org/10.1016/S1359-6454(96)00127-9
  14. J. Vazquez, C. Wagner, P. Villares and R. JimenezGaray, "Glass transition and crystallization kinetics in $Sb_{0.18}As_{0.34}Se_{0.48}$ glassy alloy by using non-isothermal techniques", J. Non-Cryst. Solids 235-237 (1998) 548. https://doi.org/10.1016/S0022-3093(98)00661-9
  15. H.E. Kissinger, "Reaction kinetics in differential thermal analysis", Anal. Chem. 29 (1957) 1702. https://doi.org/10.1021/ac60131a045
  16. J.A. Augis and J.D. Bennett, "Calculation of the Avramic parameter from heterogeneous solid state reactions using a modification of the Kissinger Method", J. Thermal. Anal. 13 (1978) 283. https://doi.org/10.1007/BF01912301
  17. T. Ozawa, "Kinetics of non-isothermal crystallization", Polymer 12 (1971) 150. https://doi.org/10.1016/0032-3861(71)90041-3