DOI QR코드

DOI QR Code

Modeling of the Power/Ground Plane Noise Including Dielectric Substrate Loss

유전체 손실을 고려한 전원부에서 유기되는 노이즈 모델링에 관한 연구

  • Kim, Jong-Min (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Nam, Ki-Hoon (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Ha, Jung-Rae (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Song, Ki-Jae (Samsung Electronics) ;
  • Na, Wan-Soo (School of Information and Communication Engineering, Sungkyunkwan University)
  • 김종민 (성균관대학교 정보통신공학과) ;
  • 남기훈 (성균관대학교 정보통신공학과) ;
  • 하정래 (성균관대학교 정보통신공학과) ;
  • 송기재 (삼성전자) ;
  • 나완수 (성균관대학교 정보통신공학과)
  • Published : 2010.02.28

Abstract

In this paper, we propose the modeling of the power/ground plane which includes complex dielectric permittivity and loss tangent for the power/ground coupled noise. In order to estimate the effects of the dielectric substrate for the coupled noise, we used full-wave simulators, HFSS(High Frequency Structure Simulation) and MWS(MicroWave Studio). The simulated results for the commercial substrates are compared with the measured values. TLM(Transmission Line Method) was used for the calculation of power plane impedance using Debye model which depicts the dielectric loss of PCB. Finally, impedance from proposed circuit model showed very good coincidence to the measured data.

논문에서는 전원부에서 노이즈가 발생되어 신호선에 노이즈가 유기될 때, 유전체의 손실 특성이 노이즈에 미치는 영향에 관해서 연구를 하였다. 이를 분석하기 위해 Full-wave 시뮬레이터인 Ansoft사의 HFSS(High Frequency Structure Simulation)와 CST사의 MWS(MicroWave Studio)의 계산 결과와 측정 결과를 비교하여 신뢰성을 확보하였고, 실제 사용되고 있는 4가지의 상용 기판에 대한 유기되는 노이즈를 해석하였다. 또한, TLM(Transmission Line Method)를 이용해서 전원면의 회로 모델 구성 시 기판의 유전체 손실을 반영할 수 있는 Debye 모델을 적용하여 주파수에 대한 임피던스를 분석할 수 있는 모델을 적용 측정 결과와 3 GHz까지 일치하는 모델을 얻었다.

Keywords

References

  1. J. Kim, M. D. Rotaru, S. Baek, J. Park, M. K. Iyer, and J. Kim, "Analysis of noise coupling from a power distribution network to signal traces in highspeed multilayer printed circuit boards", IEEE Trans. Electromagn. Compat., vol. 48, no. 2, May 2006. https://doi.org/10.1109/TEMC.2006.873865
  2. J. Pack, H. Kim, Y. Jeong, J. Kim, J. S. Pak, D. G. Kam, and J. Kim, "Modeling and measurement of simultaneous switching noise coupling through signal via transition", IEEE Trans. Adv. Packag., vol. 29, no. 3, Aug. 2006. https://doi.org/10.1109/TADVP.2006.872996
  3. J. H. Kim, M. Swaminathan, "Modeling of irregular shaped power distribution planes using transmission matrix method", IEEE Trans. Adv. Packag., vol. 24, no. 3, Aug. 2001. https://doi.org/10.1109/6040.938301
  4. J. Chandrasekhar, E. Engin, M. Swaminathan, K. Uriu, and T. Yamada, "Noise induced jitter in differential signaling", in IEEE ECTC2008, 1755-1761, May 2008. https://doi.org/10.1109/ECTC.2008.4550218
  5. M. Swaminathan, A. E. Engin, Power Integrity Mo-Deling and Design for Semiconductors and Systems, Prentice Hall, 2008.
  6. A. E. Engin, W. Mathis, W. John, G. Sommer, and H. Reichl, "Closed-form network representations of frequency-dependent RLGC parameters", International Journal of Circuit Theory and Applications, vol. 33, pp. 463-485, Nov. 2005. https://doi.org/10.1002/cta.330
  7. H. Johnson, M. Graham, High-Speed Signal Propagation, Prentice Hall, 2003.