References
- http://en.wikipedia.org/wiki/Richard_Smalley.
-
B. O’Regan and M. Gratzel, ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal
$TiO_2$ films’ Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0 - M. Gratzel, ‘Solar energy conversion by dye-sensitized photovoltaic cells’ Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
- Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, ‘Dye-Sensitized solar cells with conversion efficiency of 11.1%’ Jpn. J. Appl. Phys. Part 2, 45, L638 (2006). https://doi.org/10.1143/JJAP.45.L638
-
H. -J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. -G. Park, ‘Nano-embossed hollow spherical
$TiO_2$ as bifunctional material for high-efficiency dye-sensitized solar cells’ Adv. Mater., 20, 195, (2008). https://doi.org/10.1002/adma.200700840 - N. -G. Park and K. Kim, ‘Transparent solar cells based on dye-sensitized nanocrystalline semiconductors’ Phys. Stat. Sol. (a), 205, 1895 (2008). https://doi.org/10.1002/pssa.200778938
-
J. van de Lagemaat, N. -G. Park, and A. J. Frank, ‘Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline
$TiO_2$ solar cells: A study by electrical impedance and optical modulation techniques’ J. Phys. Chem. B, 104, 2044 (2000). https://doi.org/10.1021/jp993172v - D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, ‘Nature of photovoltaic action in dye-sensitized solar cells’ J. Phys. Chem. B, 104, 2053 (2000). https://doi.org/10.1021/jp993187t
- C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, ‘Nanocrystalline titanium oxide electrodes for photovoltaic applications’ J. Am. Ceram., Soc., 80, 3157 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
-
N. -G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, ‘Dye-sensitized
$TiO_2$ solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of$TiCl_4$ ’ J. Phys. Chem. B, 103, 3308 (1999). https://doi.org/10.1021/jp984529i - N.-G. Park, J. van de Lagemaat and A. J. Frank, ‘Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells’ J. Phys. Chem. B, 104, 8989 (2000). https://doi.org/10.1021/jp994365l
-
P. E. de Jongh and D. Vanmaekelbergh, ‘Investigation of the electronic transport properties of nanocrystalline particulate
$TiO_2$ electrodes by intensity-modulated photocurrent spectroscopy’ J. Phys. Chem. B, 101, 2716 (1997). https://doi.org/10.1021/jp962226n -
N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, ‘Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous
$TiO_2$ ’ J. Phys. Chem. B, 104, 3930 (2000). https://doi.org/10.1021/jp9936603 -
J. Nelson, ‘Continuous-time random-walk model of electron transport in nanocrystalline
$TiO_2$ electrodes’ Phys. Rev. B, 59, 15374 (1999). https://doi.org/10.1103/PhysRevB.59.15374 - K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, ‘InfluenInflthe percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells’ J. Phys. Chem. B, 107, 7759 (2003). https://doi.org/10.1021/jp022681l
-
S. Ito, T. Kitamura, Y. Wada, and S. Yanagida, ‘Facile fabrication of mesoporous
$TiO_2$ electrodes for dye solar cells: chemical modification and repetitive coating’ Sol. Energy Mater. Sol. Cells, 76, 3 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X - J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, ‘Recombination and transport processes in dye-sensitized solar cells investigated under working conditions’ J. Phys. Chem. B, 110, 17715 (2006). https://doi.org/10.1021/jp064046b
-
S. Ito, S. M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, ‘High-efficiency organicdye-sensitized solar cells controlled by nanocrystalline-
$TiO_2$ electrode thickness’ Adv. Mater., 18, 1202 (2006). https://doi.org/10.1002/adma.200502540 - S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, ‘Influence of scattering layers on efficiency of dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
- W. E. Vargas, ‘Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering’ J. Appl. Phys., 88, 4079 (2000). https://doi.org/10.1063/1.1289230
-
Z. -S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, ‘Significant influence of
$TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell’ Coord. Chem. Rev., 248, 1381 (2004). https://doi.org/10.1016/j.ccr.2004.03.006 - A. Usami, ‘Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell’ Chem. Phys. Lett., 277, 105 (1997). https://doi.org/10.1016/S0009-2614(97)00878-6
- A. Usami, ‘Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells’ Sol. Energy Mater. Sol. Cells, 64, 73 (2000). https://doi.org/10.1016/S0927-0248(00)00049-0
- J. Ferber and J. Luther, ‘Computer simulations of light scattering and absorption in dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 54, 265 (1998). https://doi.org/10.1016/S0927-0248(98)00078-6
-
A. Usami, ‘Rigorous solutions of light scattering of neighboring
$TiO_2$ particles in nanocrystalline films’ Solar Energy Mater. Sol. Cells, 59, 163 (1999). https://doi.org/10.1016/S0927-0248(99)00068-9 - W. E. Vargas and G. A. Niklasson, ‘Optical properties of nano-structured dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 69, 147 (2001). https://doi.org/10.1016/S0927-0248(00)00388-3
- H. -J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, ‘Size-dependent scattering efficiency in dye-sensitized solar cell’ Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
- S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, ‘Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells’ Chem. Commun., 15, 2011 (2005).
- K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. -G. Park, ‘Selective positioning of organic dyes in a mesoporous inorganic oxide film’ Nature Mater., 8, 665 (2009). https://doi.org/10.1038/nmat2475
- R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, ‘Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions’ Electrochim. Acta, 47, 4213 (2002). https://doi.org/10.1016/S0013-4686(02)00444-9
- F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, ‘Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy’ Sol. Energy Mater.Sol. Cells, 87, 117 (2005). https://doi.org/10.1016/j.solmat.2004.07.017
- Q. Wang, J. -E. Moser, and M. Gratzel, ‘Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells’ J. Phys. Chem. B, 109, 14945 (2005). https://doi.org/10.1021/jp052768h
- M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, ‘Determination of parameters of electron transport in dyesensitized solar cells using electrochemical impedance spectroscopy’ J. Phys. Chem. B, 110, 13872 (2006). https://doi.org/10.1021/jp061693u
Cited by
- Dye-sensitized solar cell based on spray deposited ZnO thin film: Performance analysis through DFT approach vol.136, 2015, https://doi.org/10.1016/j.saa.2014.09.121
- An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth vol.13, pp.6, 2013, https://doi.org/10.5573/JSTS.2013.13.6.635
- Dye sensitized solar cells: From genesis to recent drifts vol.70, 2017, https://doi.org/10.1016/j.rser.2016.11.136