Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier -

PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -

  • Seul, Soo Duk (Department of chemical Engineering, Dong-A University)
  • 설수덕 (동아대학교 공과대학 화학공학과)
  • Received : 2010.07.23
  • Accepted : 2010.09.11
  • Published : 2010.09.30

Abstract

Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

PMMA와 PBA core 제조 시 개시제는 APS를, 유화제 SDBS의 농도를 0.01에서 0.03 wt% 일 때 전환율이 95.8과 92.3%로 가장 우수하였으며, core-shell 복합입자의 제조 시에는 SDBS의 농도 0.02 wt% 일 때 PMMA/PBA core-shell 복합입자는 전환율이 90.0%, PBA/PMMA core-shell 복합입자는 89.0%가 되었다. FT-IR 분석과 GPC에 의한 평균분자량 측정을 통해 core와 shell 단량체들이 중합되어 있음을 확인하고, 복합입자의 형태는 상온에서의 필름형성정도와 TEM 분석으로 확인하였다. DSC에 의해 유리전이온도를 측정함으로써 일반 공중합체와는 달리 2개의 유리전이온도가 존재하여 core-shell 복합입자가 형성되었음을 알 수 있고, 각각의 core-shell 복합입자의 인장강도와 신율의 측정을 통해 고기능성 접착바인더로서의 사용가능성을 확인하였다.

Keywords

References

  1. S. R. Lee and S. D. Seul, Korean J. Chem. Eng., 19, 318 (2002). https://doi.org/10.1007/BF02698422
  2. D. H. Sim and S. D. Seul, Polymer, 32, 276 (2008).
  3. P. Tordjeman and E. Papon, J. Appl. Polym. Sci., 38, 1201 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000501)38:9<1201::AID-POLB12>3.0.CO;2-#
  4. W. W. Mooncai, Adhesive Age, 31, 33 (1998).
  5. E. B. William, Adhesive Age, 28, 28 (1985).
  6. T. O. Ahn, T. W. Hwang, and J. Y. Jho, Polymer, 21, 290 (1997).
  7. S. D. Seul and J. M. Lim, Polymer, 28, 135 (2004).
  8. D. H. Sim and S. D. Seul, Polymer, 33, 45 (2009).
  9. D. H. Sim and S. D. Seul, Polymer, 32, 433 (2008).
  10. M. S. Kim and S. D. Seul, Polymer, 33, 230 (2009).
  11. K. C. Lee, Polymer, 21, 384 (1997).
  12. S. D. Seul, Polymer, 34, 38 (2010).
  13. D. J. William et al., Macromolecule, 7, 304 (1974). https://doi.org/10.1021/ma60039a010
  14. S. Yamazaki, Kobunshi Robunshu, 33, 664 (1976).
  15. T. Matsumoto, M. Okubo, and T. Imai, Kobunshi Robunshu, 31, 576 (1974). https://doi.org/10.1295/koron.31.576
  16. T. Matsumoto, M. Okubo, and T. Imai, Kobunshi Robunshu, 33, 575 (1976). https://doi.org/10.1295/koron.33.575