DOI QR코드

DOI QR Code

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K. (Department of Physics, University of South Florida)
  • Received : 2010.05.17
  • Accepted : 2010.06.08
  • Published : 2010.06.25

Abstract

Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Keywords

References

  1. W. Jueptner and U. Schnars, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin Heidelberg, Germany, 2005).
  2. M. K. Kim, L. F. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three Dimensional Display: Principles and Applications, T. C. Poon, ed. (Springer, USA, 2006), pp. 51-72.
  3. D. Gabor, “A new microscope principle,” Nature 161, 777-778 (1948). https://doi.org/10.1038/161777a0
  4. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454-487 (1949).
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963). https://doi.org/10.1364/JOSA.53.001377
  6. C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153, 989-990 (1966). https://doi.org/10.1126/science.153.3739.989
  7. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” Journal of the Acoustical Society of America 51, 1904-1920 (1972). https://doi.org/10.1121/1.1913050
  8. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  9. U. Schnars and W. Juptner, “Direct recording of holograms by a Ccd target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). https://doi.org/10.1364/AO.33.000179
  10. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Exp. 9, 294-302 (2001). https://doi.org/10.1364/OE.9.000294
  11. C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 10 (2006). https://doi.org/10.1186/1475-925X-5-10
  12. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). https://doi.org/10.1364/OL.24.000291
  13. J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). https://doi.org/10.1088/0957-0233/19/7/074007
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). https://doi.org/10.1364/AO.42.001938
  15. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2 pi ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
  16. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
  17. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). https://doi.org/10.1364/AO.43.001131
  18. F. Dubois, L. Joannes, and J. C. Legros, “Improved threedimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). https://doi.org/10.1364/AO.38.007085
  19. T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am. A 2, 521-527 (1985). https://doi.org/10.1364/JOSAA.2.000521
  20. T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt. 48, H153-H159 (2009). https://doi.org/10.1364/AO.48.00H153
  21. T. Kim and T. C. Poon, “Experiments of depth detection and image recovery of a remote target using a complex hologram,” Opt. Eng. 43, 1851-1855 (2004). https://doi.org/10.1117/1.1764574
  22. T. C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406-415 (2009). https://doi.org/10.3807/JOSK.2009.13.4.406
  23. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “Highresolution quantitative phase-contrast microscopy by digital holography,” Opt. Exp. 13, 8693-8698 (2005). https://doi.org/10.1364/OPEX.13.008693
  24. T. Colomb, J. Kuhn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4306 (2006). https://doi.org/10.1364/OE.14.004300
  25. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008). https://doi.org/10.1088/0957-0233/19/7/074009
  26. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228-232(2009). https://doi.org/10.1016/j.bcmd.2009.01.018
  27. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). https://doi.org/10.1117/1.2204609
  28. A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello, A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting nanotechnologies and TRPV1 channels to investigate theputative anandamide membrane transporter,” PLoS One 5, e10239 (2010). https://doi.org/10.1371/journal.pone.0010239
  29. K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motilitycontrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Exp. 15, 14057-14064 (2007). https://doi.org/10.1364/OE.15.014057
  30. L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Exp. 17, 12031-12038 (2009). https://doi.org/10.1364/OE.17.012031
  31. C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305-5314 (2008). https://doi.org/10.1364/AO.47.005305
  32. W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001). https://doi.org/10.1073/pnas.191361398
  33. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006). https://doi.org/10.1364/AO.45.003893
  34. R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187-2197 (2000). https://doi.org/10.1117/1.1305542
  35. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). https://doi.org/10.1364/AO.45.000836
  36. E. Malkiel, I. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657-3666 (2003). https://doi.org/10.1242/jeb.00586
  37. S. Schedin, G. Pedrini, and H. J. Tizian, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853-2857 (2000). https://doi.org/10.1364/AO.39.002853
  38. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008). https://doi.org/10.1109/TMI.2008.927339
  39. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858 (1966). https://doi.org/10.1364/JOSA.56.000849
  40. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001). https://doi.org/10.1364/AO.40.006177
  41. A. Stern and B. Javidi, “Space-bandwith conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736-741 (2008). https://doi.org/10.1364/JOSAA.25.000736
  42. L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Exp. 13, 2444-2452 (2005). https://doi.org/10.1364/OPEX.13.002444
  43. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917-927 (2005). https://doi.org/10.1364/JOSAA.22.000917
  44. T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002). https://doi.org/10.1117/1.1458551
  45. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929-5935 (2000). https://doi.org/10.1364/AO.39.005929
  46. C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999). https://doi.org/10.1364/AO.38.004812
  47. J. W. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw Hill, Boston, USA, 1996).
  48. J. C. Li, P. Tankam, Z. J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572-574 (2009). https://doi.org/10.1364/OL.34.000572
  49. D. Y. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47, D12-D20 (2008). https://doi.org/10.1364/AO.47.000D12
  50. L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005). https://doi.org/10.1364/OL.30.002092
  51. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071 (2008). https://doi.org/10.1364/AO.47.003064
  52. E. Wolf, “Determination of amplitude and phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18-20(1970). https://doi.org/10.1364/JOSA.60.000018
  53. L. Onural, “Diffraction from a wavelet point-of-view,” Opt. Lett. 18, 846-848 (1993). https://doi.org/10.1364/OL.18.000846
  54. M. Brunel, S. Coetmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform,” Appl. Opt. 48, 579-583 (2009). https://doi.org/10.1364/AO.48.000579
  55. Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47, 552-557 (2009). https://doi.org/10.1016/j.optlaseng.2008.10.002
  56. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Exp. 15, 13640-13648 (2007). https://doi.org/10.1364/OE.15.013640
  57. N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in offaxis digital holography through nonlinear filtering,” Appl. Opt. 48, H186-H195 (2009). https://doi.org/10.1364/AO.48.00H186
  58. H. Cho, J. K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Optics and Laser Technology 41, 741-745 (2009). https://doi.org/10.1016/j.optlastec.2009.01.001
  59. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). https://doi.org/10.1364/AO.39.004070
  60. L. F. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Exp. 13, 5621-5627 (2005). https://doi.org/10.1364/OPEX.13.005621
  61. L. F. Yu and M. K. Kim, “Variable tomographic scanning with wavelength scanning digital interference holography,” Opt. Comm. 260, 462-468 (2006). https://doi.org/10.1016/j.optcom.2005.11.022
  62. Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817-824 (2008). https://doi.org/10.1364/AO.47.000817
  63. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Exp. 14, 5895-5908 (2006). https://doi.org/10.1364/OE.14.005895
  64. L. F. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897-899 (2006). https://doi.org/10.1364/OL.31.000897
  65. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90,041104 (2007). https://doi.org/10.1063/1.2432287
  66. S. Shin and Y. Yu, “Three-dimensional information and refractive index measurement using a dual-wavelength digital holographic microscope,” J. Opt. Soc. Korea 13, 173-177 (2009). https://doi.org/10.3807/JOSK.2009.13.2.173
  67. N. Warnasooriya and M. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56, 67-74 (2009). https://doi.org/10.1080/09500340802450615
  68. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Exp. 15, 9239-9247 (2007). https://doi.org/10.1364/OE.15.009239
  69. C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-inone multifunctional optical microscope with a single holographic measurement,” Opt. Eng. 47, 087001 (2008). https://doi.org/10.1117/1.2968708
  70. A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203-3210 (2008). https://doi.org/10.1364/AO.47.003203
  71. W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144-H152 (2009). https://doi.org/10.1364/AO.48.00H144
  72. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  73. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Exp. 7, 305-310 (2000). https://doi.org/10.1364/OE.7.000305
  74. J. W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Exp. 16, 21022-21031 (2008). https://doi.org/10.1364/OE.16.021022
  75. J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653-655(2009). https://doi.org/10.1364/OL.34.000653
  76. Y. Jeon and C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009). https://doi.org/10.1117/1.3242833
  77. S. J. Jeong and C. K. Hong, “Illumination-angle-scanning digital interference holography for optical section imaging,” Opt. Lett. 33, 2392-2394 (2008). https://doi.org/10.1364/OL.33.002392
  78. W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008). https://doi.org/10.1364/OL.33.000171
  79. T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006). https://doi.org/10.1364/AO.45.000872
  80. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000). https://doi.org/10.1364/OL.25.000212
  81. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19, 074010 (2008). https://doi.org/10.1088/0957-0233/19/7/074010
  82. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9-H15 (2009). https://doi.org/10.1364/AO.48.0000H9
  83. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987). https://doi.org/10.1126/science.3547653
  84. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). https://doi.org/10.1103/PhysRevLett.24.156
  85. S. C. Kuo, “Using optics to measure biological forces and mechanics,” Traffic 2, 757-763 (2001). https://doi.org/10.1034/j.1600-0854.2001.21103.x
  86. M. W. Berns, “Laser scissors and tweezers,” Scientific American 278, 62-67 (1998).
  87. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments 69, 1974-1977 (1998). https://doi.org/10.1063/1.1148883
  88. D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Exp. 16, 10507-10517 (2008). https://doi.org/10.1364/OE.16.010507
  89. D. C. Clark, L. Krzewina, and M. K. Kim, “Quantitative analysis by digital holography of the effect of optical pressure on a biological cell,” in Proc. OSA DH Topical Meeting (Miami, FL, USA, 2010), paper JMA23.
  90. M. C. Potcoava, L. Krzewina, and M. K. Kim, “Threedimensional tracking of optically trapped particles by digital Gabor holography,” in Proc. OSA DH (Miami, FL, USA, 2010), paper JMA35.

Cited by

  1. Phase Uncertainty in Digital Holographic Microscopy Measurements in the Presence of Solution Flow Conditions vol.122, 2017, https://doi.org/10.6028/jres.122.022
  2. Characterization of the reference wave in a compact digital holographic camera vol.57, pp.1, 2018, https://doi.org/10.1364/AO.57.00A235
  3. Visible green upconversion luminescence of Li+/Er3+/Yb3+co-doped CaWO4phosphor and effects of Yb3+concentration vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.142
  4. Phase aberration compensation by spectrum centering in digital holographic microscopy vol.284, pp.18, 2011, https://doi.org/10.1016/j.optcom.2011.05.013
  5. Applications of digital holography to measurements and optical characterization vol.50, pp.9, 2011, https://doi.org/10.1117/1.3596204
  6. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography vol.17, pp.3, 2012, https://doi.org/10.1117/1.JBO.17.3.036010
  7. Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology vol.106, pp.3, 2012, https://doi.org/10.1007/s00340-011-4782-y
  8. Self-interference digital holography with a geometric-phase hologram lens vol.42, pp.19, 2017, https://doi.org/10.1364/OL.42.003940
  9. Recent advances in holographic 3D particle tracking vol.7, pp.4, 2015, https://doi.org/10.1364/AOP.7.000713
  10. Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio vol.56, pp.13, 2017, https://doi.org/10.1364/AO.56.000F91
  11. Improvement of the Quality of Reconstructed Holographic Images by Extrapolation of Digital Holograms vol.58, pp.10, 2016, https://doi.org/10.1007/s11182-016-0663-5
  12. 3D displacement measurements of the tympanic membrane with digital holographic interferometry vol.20, pp.5, 2012, https://doi.org/10.1364/OE.20.005613
  13. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A54
  14. High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.691
  15. In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy pp.1864063X, 2018, https://doi.org/10.1002/jbio.201800099
  16. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.016212