DOI QR코드

DOI QR Code

Electronic Detection of Biomarkers by Si Field-Effect Transistor from Undiluted Sample Solutions with High Ionic Strengths

  • Ah, Chil-Seong (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, An-Soon (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Wan-Joong (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Park, Chan-Woo (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Ahn, Chang-Geun (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Yang, Jong-Heon (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Baek, In-Bok (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Tae-Youb (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Sung, Gun-Yong (Biosensor Research Team, Electronics and Telecommunications Research Institute)
  • Received : 2010.01.07
  • Accepted : 2010.03.29
  • Published : 2010.06.20

Abstract

In this study, we have developed a new detection method using Si field effect transistor (FET)-type biosensors, which enables the direct monitoring of antigen-antibody binding within very high-ionic-strength solutions such as 1$\times$PBS and human serum. In the new method, as no additional dilution or desalting processes are required, the FET-type biosensors can be more suitable for ultrasensitive and real-time analysis of raw sample solutions. The new detection scheme is based on the observation that the strength of antigen-antibody-specific binding is significantly influenced by the ionic strength of the reaction solutions. For a prostate specific antigen (PSA), in some conditions, the binding reaction between PSA and anti-PSA in a low-ionic strength reaction solution such as 10 ${\mu}M$ phosphate buffer is weak (reversible), while that in high-ionic strength reaction solutions such as 1$\times$PBS or human serum is strong.

Keywords

References

  1. Elfström, N.; Karlström, A. E.; Linnros, J. Nano Lett. 2006, 8, 945. https://doi.org/10.1021/nl080094r
  2. Zhang, G.-J.; Zhang, G.; Chua J. H.; Chee, R.-E.; Wong, E. H.; Agarwal, A.; Buddharaju, K. D.; Singh, N.; Gao, Z.; Balasubramanian, N. Nano Lett. 2008, 8, 1066. https://doi.org/10.1021/nl072991l
  3. Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Nano Lett. 2007, 7, 3405. https://doi.org/10.1021/nl071792z
  4. Park, I.; Li, Z.; Li, X.; Pisano, A. P.; Williams, R. S. Biosens. Bioelectron. 2007, 22, 2065. https://doi.org/10.1016/j.bios.2006.09.017
  5. Heitzinger, C.; Klimeck, G. J. Comput. Electron. 2007, 6, 387. https://doi.org/10.1007/s10825-006-0139-x
  6. Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nature Biotech. 2005, 23, 1294. https://doi.org/10.1038/nbt1138
  7. Kim, A.; Ah, C. S.; Yu, H. Y.; Yang, J.-H.; Baek, I.-B.; Ahn, C.-G.; Park, C. W.; Jun, M. S.; Lee, S. Appl. Phys. Lett. 2007, 91, 103901. https://doi.org/10.1063/1.2779965
  8. Abe, M.; Murata, K.; Kojima, A.; Ifuku, Y.; Shimizu, M.; Ataka, T.; Matsumoto, K. J. Phys. Chem. B 2007, 111, 8667.
  9. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959. https://doi.org/10.1021/ja972332i
  10. Cloarec, J. P.; Martin, J. R.; Polychronakos, C.; Lawrence I.; Lawrence, M. F.; Souteyrand, E. Sens. Actuators B 1999, 58, 394. https://doi.org/10.1016/S0925-4005(99)00102-1
  11. Sakata, T.; Kamhori, M.; Miyahara, Y. Mater. Sci. Eng. C 2004, 24, 827. https://doi.org/10.1016/j.msec.2004.08.042
  12. Sakata, T.; Miyahara, Y. ChemBioChem 2005, 6, 703. https://doi.org/10.1002/cbic.200400253
  13. Howarter, J. A.; Youngblood, J. P. Langmuir 2006, 22, 11142. https://doi.org/10.1021/la061240g
  14. Bunimovich, Y. L.; Shin, Y. S.; Yeo, W.-S.; Amori, M.; Kwong, G.; Heath, J. R. J. Am. Chem. Soc. 2006, 128, 16323. https://doi.org/10.1021/ja065923u
  15. Uno, T.; Tabata, H.; Kawai, T. Anal. Chem. 2007, 79, 52. https://doi.org/10.1021/ac060273y
  16. Mcalpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Nature Mater. 2007, 6, 379. https://doi.org/10.1038/nmat1891
  17. Park, H.-J.; Kim, S. K.; Park, K.; Lyu, H.-K.; Lee, C.-S.; Chung, S. J.; Yun, W. S.; Kim, M.; Chung, B. H. FEBS Lett. 2009, 583, 157. https://doi.org/10.1016/j.febslet.2008.11.039
  18. Chandra, A. Phys. Rev. Lett. 2000, 85, 768. https://doi.org/10.1103/PhysRevLett.85.768
  19. Lee, K. K.; Fitch, C. A.; Garcia-Moreno E. B. Protein Sci. 2002, 11, 1004. https://doi.org/10.1110/ps.4700102
  20. Chang, B. H.; Bae, Y. C. Biomacromolecules 2003, 4, 1713. https://doi.org/10.1021/bm0300406
  21. Curtis, R. A.; Montaser, U. A.; Prausnitz, J. M.; Blanch, H. W. Biotechnol. Bioeng. 2002, 79, 367. https://doi.org/10.1002/bit.10342
  22. Chothia, C.; Janin, J. Nature 1975, 256, 705. https://doi.org/10.1038/256705a0
  23. Chothia, C. Nature 1974, 248, 338. https://doi.org/10.1038/248338a0
  24. Goto, K. Biochem. Biophys. Res. Commun. 1995, 206, 497. https://doi.org/10.1006/bbrc.1995.1071

Cited by

  1. Nanomaterial-Based Biosensor as an Emerging Tool for Biomedical Applications vol.40, pp.6, 2012, https://doi.org/10.1007/s10439-011-0457-4
  2. Detection of uncharged or feebly charged small molecules by field-effect transistor biosensors vol.33, pp.1, 2010, https://doi.org/10.1016/j.bios.2012.01.010
  3. Label‐Free Sensing of Biomolecules with Field‐Effect Devices for Clinical Applications vol.26, pp.6, 2010, https://doi.org/10.1002/elan.201400073