DOI QR코드

DOI QR Code

Multimodal neuroimaging in presurgical evaluation of childhood epilepsy

  • Jung, Da-Eun (Department of Pediatrics, Ajou University School of Medicine) ;
  • Lee, Joon-Soo (Department of Pediatrics, Pediatric Epilepsy Clinic, Severance Children's Hospital, Brain Research Institute, Yonsei University College of Medicine)
  • Received : 2010.06.05
  • Accepted : 2010.07.15
  • Published : 2010.08.15

Abstract

In pre-surgical evaluation of pediatric epilepsy, the combined use of multiple imaging modalities for precise localization of the epileptogenic focus is a worthwhile endeavor. Advanced neuroimaging by high field Magnetic resonance imaging (MRI), diffusion tensor images, and MR spectroscopy have the potential to identify subtle lesions. $^{18}F$-FDG positron emission tomography and single photon emission tomography provide visualization of metabolic alterations of the brain in the ictal and interictal states. These techniques may have localizing value for patients which exhibit normal MRI scans. Functional MRI is helpful for non-invasively identifying areas of eloquent cortex. These advances are improving our ability to noninvasively detect epileptogenic foci which have gone undetected in the past and whose accurate localization is crucial for a favorable outcome following surgical resection.

Keywords

References

  1. Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol 1998;44:740-8. https://doi.org/10.1002/ana.410440507
  2. Li LM, Fish DR, Sisodiya SM, Shorvon SD, Alsanjari N, Stevens JM. High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J Neurol Neurosurg Psychiatry 1995;59:384-7. https://doi.org/10.1136/jnnp.59.4.384
  3. Barkovich AJ, Kuzniecky RI. Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol 1996;13:481-94. https://doi.org/10.1097/00004691-199611000-00003
  4. Widdess-Walsh P, Diehl B, Najm I. Neuroimaging of focal cortical dysplasia. J Neuroimaging 2006;16:185-96. https://doi.org/10.1111/j.1552-6569.2006.00025.x
  5. Ruggieri PM, Najn IM. MR imaging in epilepsy. Neurol Clin 2001;19:477-89. https://doi.org/10.1016/S0733-8619(05)70027-X
  6. De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992;13:1555-64.
  7. Wehner T, Luders H. Role of Neuroimaging in the presurgical evaluation of epilepsy. J Clin Neurol 2008;4 1-16. https://doi.org/10.3988/jcn.2008.4.1.1
  8. Zijlmans M, de Kort GA, Witkamp TD, Huiskamp GM, Seppenwoolde JH, van Huffelen AC, et al. 3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J Magn Reson Imaging 2009;30:256-62. https://doi.org/10.1002/jmri.21811
  9. Knake S, Triantafyllou C, Wald LL, Wiggins G, Kirk GP, Larsson PG, et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 2005;65:1026-31. https://doi.org/10.1212/01.wnl.0000179355.04481.3c
  10. Henry TR, Babb TL, Engel J, Jr, Mazziotta JC, Phelps ME, Crandall PH. Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 1994;36:925-7. https://doi.org/10.1002/ana.410360620
  11. Foldvary N, Lee N, Hanson MW, Coleman RE, Hulette CM, Friedman AH, et al. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia 1999;40:26-9. https://doi.org/10.1111/j.1528-1157.1999.tb01984.x
  12. Cornford EM, Gee MN, Swartz BE, Mandelkern MA, Blahd WH, Landaw EM, et al. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: reduced capillary influx. Ann Neurol 1998;43:801-8. https://doi.org/10.1002/ana.410430615
  13. Won HJ, Chang KH, Cheon JE, Kim HD, Lee DS, Han MH, et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 1999;20:593-9.
  14. Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/ MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008;71:1594-601. https://doi.org/10.1212/01.wnl.0000334752.41807.2f
  15. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim BT, et al. Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 2003;30:581-7. https://doi.org/10.1007/s00259-002-1079-8
  16. Vinton AB, Carne R, Hicks RJ, Desmond PM, Kilpatrick C, Kaye AH, et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain 2007;130:548-60. https://doi.org/10.1093/brain/awl232
  17. Yun CH, Lee SK, Lee SY, Kim KK, Jeong SW, Chung CK. Prognostic factors in neocortical epilepsy surgery: multivariate analysis. Epilepsia 2006;47:574-9. https://doi.org/10.1111/j.1528-1167.2006.00470.x
  18. Muzik O, Chugani DC, Shen C, de Silva EA, Shah J, Shah A, et al. Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput Aided Surg 1998;3:74-82. https://doi.org/10.3109/10929089809148132
  19. Muzik O, de Silva EA, Juhasz C, Chugani DC, Shah J, Nagy F, et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000;54:171-9. https://doi.org/10.1212/WNL.54.1.171
  20. Hammers A, Koepp MJ, Richardson MP, Hurlemann R, Brooks DJ, Duncan JS. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 2003;126:1300-18. https://doi.org/10.1093/brain/awg138
  21. Juhasz C, Chugani DC, Muzik O, Shah A, Asano E, Mangner TJ, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 2003;60:960-8. https://doi.org/10.1212/01.WNL.0000049468.05050.F2
  22. Kagawa K, Chugani DC, Asano E, Juhasz C, Muzik O, Shah A, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]Methyl-L-Tryptophan positron emission tomography (PET). J Child Neurol 2005;20:429-38. https://doi.org/10.1177/08830738050200050701
  23. Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 2008;38:227-39. https://doi.org/10.1053/j.semnuclmed.2008.02.004
  24. Van Paesschen W. Ictal SPECT. Epilepsia 2004;45 Suppl 4:35-40.
  25. O'Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998;50:445-54. https://doi.org/10.1212/WNL.50.2.445
  26. Lee SK, Lee SY, Yun CH, Lee HY, Lee JS, Lee DS. Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology 2006;48:678-84. https://doi.org/10.1007/s00234-006-0106-z
  27. Kim JT, Bai SJ, Choi KO, Lee YJ, Park HJ, Kim DS, et al. Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 2009;18:504-10. https://doi.org/10.1016/j.seizure.2009.04.012
  28. Aasly J, Silfvenius H, Aas TC, Sonnewald U, Olivecrona M, Juul R, et al. Proton magnetic resonance spectroscopy of brain biopsies from patients with intractable epilepsy. Epilepsy Res 1999;35:211-7. https://doi.org/10.1016/S0920-1211(99)00011-X
  29. Kuzniecky R, Palmer C, Hugg J, Martin R, Sawrie S, Morawetz R, et al. Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol 2001;58:2048-53. https://doi.org/10.1001/archneur.58.12.2048
  30. Kuzniecky R, Hugg J, Hetherington H, Martin R, Faught E, Morawetz R, et al. Predictive value of 1H MRSI for outcome in temporal lobectomy. Neurology 1999;53:694-8. https://doi.org/10.1212/WNL.53.4.694
  31. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637-48.
  32. Sundgren PC, Dong Q, Gomez-Hassan D, Mukherji SK, Maly P, Welsh R. Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 2004;46:339-50. https://doi.org/10.1007/s00234-003-1114-x
  33. Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002;20:511-9. https://doi.org/10.1016/S0730-725X(02)00509-X
  34. Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 2001;124:627-36. https://doi.org/10.1093/brain/124.3.627
  35. Okumura A, Fukatsu H, Kato K, Ikuta T, Watanabe K. Diffusion tensor imaging in frontal lobe epilepsy. Pediatr Neurol 2004;31:203-6. https://doi.org/10.1016/j.pediatrneurol.2004.03.010
  36. Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Thom M, Harkness W, et al. Diffusion tensor imaging in refractory epilepsy. Lancet 2002;359:1748-51. https://doi.org/10.1016/S0140-6736(02)08615-4
  37. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology 2004;230:77-87. https://doi.org/10.1148/radiol.2301021640
  38. Lee SK, Kim DI, Mori S, Kim J, Kim HD, Heo K, et al. Diffusion tensor MRI visualizes decreased subcortical fiber connectivity in focal cortical dysplasia. Neuroimage 2004;22:1826-29. https://doi.org/10.1016/j.neuroimage.2004.04.028
  39. Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK, et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 2002;15:494-515. https://doi.org/10.1002/nbm.779
  40. Jack CR Jr, Thompson RM, Butts RK, Sharbrough FW, Kelly PJ, Hanson DP, et al. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 1994;190:85-92.
  41. Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, et al. Functional magnetic resonance imaging of complex human movements. Neurology 1993;43:2311-8. https://doi.org/10.1212/WNL.43.11.2311
  42. Hammeke TA, Yetkin FZ, Mueller WM, Morris GL, Haughton VM, Rao SM, et al. Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 1994;35:677-81. https://doi.org/10.1227/00006123-199410000-00014
  43. Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol 1997;18:1311-5.
  44. Gaillard WD. Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimaging Clin N Am 2004;14:471-85. https://doi.org/10.1016/j.nic.2004.04.005
  45. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL 3rd, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 2003;60:1788-92. https://doi.org/10.1212/01.WNL.0000068022.05644.01
  46. Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G, Tracy JI, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 2004;127:2286-98. https://doi.org/10.1093/brain/awh281
  47. Gaillard WD, Balsamo L, Xu B, Grandin CB, Braniecki SH, Papero PH, et al. Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 2002;59:256-65. https://doi.org/10.1212/WNL.59.2.256

Cited by

  1. Computer-Aided Diagnosis and Localization of Lateralized Temporal Lobe Epilepsy Using Interictal FDG-PET vol.4, pp.None, 2010, https://doi.org/10.3389/fneur.2013.00031
  2. MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features vol.57, pp.9, 2010, https://doi.org/10.1007/s00234-015-1540-6
  3. Predicting multiscan MRI outcomes in children with neurodevelopmental conditions following MRI simulator training vol.52, pp.None, 2010, https://doi.org/10.1016/j.dcn.2021.101009