Sulforaphane and Total Phenolics Contents and Antioxidant Activity of Radish according to Genotype and Cultivation Location with Different Altitudes

재배지 고도에 따른 무 품종별 설포라판, 총페놀함량 및 항산화 특성

  • Im, Ju-Sung (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Lee, Eung-Ho (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science) ;
  • Lee, Jong-Nam (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Kim, Ki-Deog (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Kim, Hwa-Yeong (Department of Applied Plant Science, Kangnung-Wonju National University) ;
  • Kim, Myung-Jun (Institute of Agricultural Science and Technology, Chonbuk National University)
  • 임주성 (국립식량과학원 고령지농업연구센터) ;
  • 이응호 (국립원예특작과학원 시설원예시험장) ;
  • 이종남 (국립식량과학원 고령지농업연구센터) ;
  • 김기덕 (국립식량과학원 고령지농업연구센터) ;
  • 김화영 (강릉원주대학교 식물응용과학과) ;
  • 김명준 (전북대학교 농업과학기술연구소)
  • Received : 2009.05.26
  • Accepted : 2009.12.17
  • Published : 2010.06.30

Abstract

Sulforaphane (SFN) and total phenolics (TPC) contents and antioxidant activity (AA) were analyzed from 13 radish genotypes (Rhaphanus sativus L.), cultivated at 3 locations with different altitudes (Gangneung: asl 5 m, Jinbu: asl 550 m, and Daegwallyeong: asl 750 m). SFN varied greatly from 0.1 to $120.5{\mu}g{\cdot}g^{-1}$ in dry weight test and was significantly affected by location ($P{\leq}0.001$), genotype ($P{\leq}0.001$) and $location{\times}genotype$ interaction ($P{\leq}0.01$). Radishes, cultivated at Daegwallyeong site, showed higher SFN than those of other locations. Among different genotypes, the root of 'Black radish' and leaves of 'Purunmu' of Daegwallyeong had the highest SFN (107.8 and $120.5{\mu}g{\cdot}g^{-1}$, respectively). TPC in root was affected by genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.01$), but not by location. In leaves, TPC was affected by location ($P{\leq}0.01$), genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.001$). AA expressed as electron donating ability was significantly influenced by location, genotype and $location{\times}genotype$ interaction and correlated positively with TPC ($Pearson's$ $r$=0.897) in root. These results suggest that radish could be a good source of functional food and high altitude location such as Daegwallyeong has potential for the production of radish with high content of health promoting factors.

무 13종을 고도가 다른 3지역(강릉-해발5m, 진부-해발550m, 대관령-해발 750m)에서 재배하여 설포라판함량, 총페놀함량, 항산화성을 조사하였다. 설포라판함량은 재배지역과 품종에 따라 0.1-$120.5{\mu}g{\cdot}g^{-1}$의 큰 차이가 있었으며 재배지역($P{\leq}0.001$), 품종($P{\leq}0.001$), 그리고 두 요소의 교호작용($P{\leq}0.01$)에 의해 영향을 받은 것으로 나타났다. 특히, 대관령에서 재배된 무 품종들은 다른 두 지역보다 설포라판함량이 높았으며, 품종들 중에는 검정무(근부, $107.8{\mu}g{\cdot}g^{-1}$)와 푸른무(엽부, $120.5{\mu}g{\cdot}g^{-1}$)가 가장 높았다. 총페놀함량은 근부의 경우 품종별($P{\leq}0.001$) 큰 차이가 있었으며, 품종 및 지대의 교호작용($P{\leq}0.01$)에 의해서도 영향을 받았으나, 지역에 따른 유의적 차이는 없었다. 엽에서는 근부와 달리 지역($P{\leq}0.01$)에 따라 차이가 있었으며, 품종별($P{\leq}0.001$) 그리고 지대와 품종의 교호작용($P{\leq}0.001$)에 의해서도 영향을 받았다. 전자공여능으로 분석한 항산화능은 재배지대와 품종, 그리고 두 요소의 교호작용에 의해 차이가 났다. 한편, 주요 시식부위인 무의 근부에서 총페놀함량과 항산화능의 상관성은 매우 높은 정의 상관(Pearson's r=0.897)을 보였으나 설포라판과 총페놀함량 및 설포라판과 항산화능은 상관성이 낮았다. 본 연구에서 무는 일반식품뿐만 아니라 기능성 식품의 원료로도 가치가 있음이 확인되었다. 또한, 건강기능성을 목적으로 한 무의 생산을 위해서는 품종과 재배지대의 선택이 중요하며, 지대가 높은 고랭지가 유리한 것으로 판단되었다.

Keywords

References

  1. Cao, G., E. Sofic, and R.L. Prior. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44:3426-3431. https://doi.org/10.1021/jf9602535
  2. Chiao, J.W., F.L. Chung, R.T. Kancherla, T. Ahmed, A. Mittelman, and C.C. Conaway. 2002. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20:631-636.
  3. Craig, S.C. and E.S. Carl. 2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Amer. Soc. Hort. Sci. 129:321-330.
  4. Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Sci. USA 94:10367-10372. https://doi.org/10.1073/pnas.94.19.10367
  5. Fahey, J.W. and P. Talalay. 1999. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxic. 37:973-979. https://doi.org/10.1016/S0278-6915(99)00082-4
  6. Gamet-Payrastre L., P. Li, S. Lumeau, G. Cassar, M.A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, and F. Terce. 2000. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60:1426-1433.
  7. Hamilton, S.M. and R.W. Teel. 1996. Effects of isothiocyanates on cytochrome P-450 1A1 and 1A2 activity and on the mutagenicity of heterocyclic amines. Anticancer Res. 16:3597- 3602.
  8. Hashem, F.A. and M.M. Saleh. 1999. Antimicrobial components of some cruciferae plants. Phytotherapy Res. 13:329-332. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
  9. Hecht, S.S. 1999. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J. Nutr. 129:768-774. https://doi.org/10.1093/jn/129.3.768S
  10. Hwang, C.W. 2003. Antifungal activity of Korean radish (Raphanus sativaus L) extracts against pathogenic plant. Kor. J. Life Sci.13:223-229. https://doi.org/10.5352/JLS.2003.13.2.223
  11. Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.P. Rauha, R.K. Pihlaja, T.S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962. https://doi.org/10.1021/jf990146l
  12. Kaur, C. and H.C. Kapoor. 2001. Antioxidants in fruits and vegetables-the millennium's health. Inter. J. Food Sci. Technol. 36:703-725. https://doi.org/10.1046/j.1365-2621.2001.00513.x
  13. Kim, J.D., S.W. Ahn, and I.B. Song. 2004. A research on the radish based on the Sasang Constitutional Medicine. Kor. J. Oriental Med. 10:63-80.
  14. Kim, M.R., K.J. Lee, J.H. Kim, and D.E. Sok. 1997. Determination of sulforaphane in cruciferous vegetables by SIM. Kor. J. Food Sci. Technol. 29:882-887.
  15. Kim, M.R. and H.S. Rhee. 1993. Decrease in pungency in Radish Kimchi during fermentation. J. Food Sci. 58:128-132. https://doi.org/10.1111/j.1365-2621.1993.tb03226.x
  16. Kim, S.J., B.S. Kim, T.W. Kyung, S.C. Lee, C.W. Rho, K.R. Choi, H.J. Hwang, and H.S. Choi. 2006. Suppressive effects of young radish cultivated with sulfur on growth and metastasis of B16-F10 melanoma cells. Arch. Pharm Res. 29:235-240. https://doi.org/10.1007/BF02969399
  17. Knekt, P., R. Jarvinen, R. Seppanen, M. Heliovaara, L. Teppo, and A. Aroma. 1997. Dietary flavonoids and the risk of lung cancer and other malignant neoplasm. Amer. J. Epidemiology 146:223-230. https://doi.org/10.1093/oxfordjournals.aje.a009257
  18. Kwon, Y.D., E.Y. Ko, S.J. Hong, and S.W. Park. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor. J. Hort. Sci. Technol. 26:344-349.
  19. Lee, J.M., I.O. Yoo, and B.H. Min. 1996. Effect of cultivars and cultural conditions on the pungent principle contents in radish roots. Kor. J. Hort. Sci. Technol. 37:349-356.
  20. Liang, H., Q.P. Yuan, and Q. Xiao. 2005. Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography. J. Chrom. B. 828:91-96. https://doi.org/10.1016/j.jchromb.2005.09.041
  21. Liang, H., Q.P. Yuan, H.R. Dong, and Y.M. Liu. 2006. Determination of sulforaphane in broccoli and cabbage by highperformance liquid chromatography. J. Food Composition and Analysis 19:473-476. https://doi.org/10.1016/j.jfca.2005.11.005
  22. Madsen, H.L., C.M. Andersen, L.V. Jorgensen, and L.H. Skibsted. 2000. Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. Eur. Food Res. Technol. 211:240-246. https://doi.org/10.1007/s002170000189
  23. Mohamed, B., C. Mohamed, and S. Sami. 2004. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar chemlali from Tunisia. J. Agric. Food Chem. 52:5476-5481. https://doi.org/10.1021/jf0497004
  24. Mulcahy R.T., M.A. Wartman, H.H. Bailey, and J.J. Gipp. 1997. Constitutive and b-naphtho-avone-induced expression of the human g-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J. Biol. Chem. 272:7445-7454. https://doi.org/10.1074/jbc.272.11.7445
  25. Nakagawa, K., U. Toshiko, H. Ohki, T. Tsuyoshi, S. Toshihide, and M. Teruo. 2006. Evaporative light scattering analysis of sulforaphane in broccoli samples: Quality of broccoli products regarding sulforaphane contents. J. Agric. Food Chem. 54: 2479-2483. https://doi.org/10.1021/jf051823g
  26. National Institute of Highland Agriculture (NIHA). 2005. Research reports for 2005. Natl. Inst. Highland Agr. R.D.A. p. 399-413.
  27. Oomah, B.D., C.G. Campbell, and G. Mazza. 1996. Effects of cultivar and environment on phenolic acids in buckwheat. Euphytica 90:73-77.
  28. Palace, V.P., N. Khaper, Q. Qin, and Singal P.K. 1999. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 26:746-761. https://doi.org/10.1016/S0891-5849(98)00266-4
  29. Park, Y.K., D.H. Choi, H.J. Lee, S.S. Lee, W.Y. Lee, and J.K. Ahn. 2004. Structure-antioxidant activity relationships of isoflavonoids. J. Kor. Wood Sci. Technol. 32:66-70.
  30. Pompella, A., A. Visvikis, A. Paolicchi, V. De Tata, and A.F. Casini. 2003. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66:1499-1503. https://doi.org/10.1016/S0006-2952(03)00504-5
  31. Rosa, E.A.S., R.K. Heaney, C.A.M. Portas, and G.R. Fenwick. 1996. Changes in glucosinolate concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons. J. Sci. Food Agr. 71:237-244. https://doi.org/10.1002/(SICI)1097-0010(199606)71:2<237::AID-JSFA574>3.0.CO;2-P
  32. Stahelin, H.B., K.F. Gey, M. Eichholzer, and E. Ludin. 1991. Beta-carotene and cancer prevention: the Basel Study. Amer. J. Clin. Nutr. 53:265-269. https://doi.org/10.1093/ajcn/53.1.265S
  33. Vallejo, F., F.A. Tomas-Barberan, and C. Garcia-Viguera. 2003. Effect of climatic and sulfur fertilization conditions, on phenolic compounds and vitamin C, in the influorescences of eight broccoli cultivars. Eur. Food Res. Technol. 216:395-401. https://doi.org/10.1007/s00217-003-0664-9
  34. Wang, H., G.H. Cao, and R.L. Prior. 1996. Total antioxidant capacity of fruits. J. Agric. Food Chem. 44:701-705. https://doi.org/10.1021/jf950579y
  35. Wang, S.Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49:4977-4982. https://doi.org/10.1021/jf0106244
  36. Willet, C.W. 1994. Micronutrients and cancer risk. Am. J. Clin. Nutr. 59:162-165.
  37. Xiangfei, L., A. Shane, B. Marisa, P. John, Z. Kequan, S. Cecil, S. Frank, Y. Liangli, and K. Patricia. 2007. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. Food Sci. Technol. 40:552-557.
  38. Yasushi, N., I. Takako, T. Atsuo, K. Jun, M. Tomoaki, O. Shigehisa, S. Kenji, and O. Kozo. 2001. 4-(methylthio)-3- butenyl isothiocyanate, a principal antimutagen in daikon (Raphanus sativus; Japanese white radish). J. Agric. Food Chem. 49:5755-5760. https://doi.org/10.1021/jf0108415
  39. Yim, H.B., G.S. Lee, and H.J. Chae. 2004. Cytotoxicity of ethanol extract of Raphanuse Sativus on a human lung cancer cell line. J. Korean Soc. Food Sci. Nutr. 33:287-290. https://doi.org/10.3746/jkfn.2004.33.2.287
  40. Yoon, W.M., S.S. Lee, J.Y. Yoon, and H.K. Pyo. 1983. Studies on bolting of stored seeds of radish (Raphanus sativus L.). J. Kor. Soc. Hort. Sci. 24:188-192.
  41. Yu, L., J. Perret, M. Harris, J. Wilson, and S. Haley. 2003. Antioxidant properties of bran extracts from "Akron" wheat grown at different locations. J. Agric. Food Chem. 51:1566-1570. https://doi.org/10.1021/jf020950z
  42. Zhang, Y., P. Talalay, C.G. Cho, and G.H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. U.S.A. 89:2399-2403.
  43. Zhang Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: Chemistry and Mechanisms. Cancer Res. 54:1976-1981.