Composition Analysis between Kohlrabi (Brassica oleracea var. gongylodes) and Radish (Raphanus sativus)

무와 비교한 콜라비의 성분분석

  • Choi, Seung-Hyun (Department of Food Science and Technology, Chungnam National University) ;
  • Ryu, Dong-Kul (Department of Food Science and Technology, Chungnam National University) ;
  • Park, Su-Hyoung (National Institute of Horticultural & Herbal Science) ;
  • Ahn, Kyoung-Gu (Joeun Seeds) ;
  • Lim, Yong-Pyo (Plant Molecular Marker and Food analysis Research Center, Chungnam National University) ;
  • An, Gil-Hwan (Department of Food Science and Technology, Chungnam National University)
  • 최승현 (충남대학교 농업생명과학대학 식품공학과) ;
  • 류동걸 (충남대학교 농업생명과학대학 식품공학과) ;
  • 박수형 (국립원예특작과학원 채소과) ;
  • 안경구 (조은종묘) ;
  • 임용표 (충남대학교 식물분자마커 및 식품성분분석센터) ;
  • 안길환 (충남대학교 농업생명과학대학 식품공학과)
  • Received : 2009.10.19
  • Accepted : 2010.01.18
  • Published : 2010.06.30

Abstract

The major deterring factor of radish consumption is bitter and pungent tastes caused by glucosinolates. Recently kohlrabi was introduced in Korea and mainly cultivated in Jeju Island during winter. Since the texture and taste of kohlrabi are similar to radish, the kohlrabi is expected to substitute radish. This study was done to compare compositional quality between kohlrabi and radish. The kohlrabi contained less reducing sugars, cellulose and pectin than the radish. The kohlrabi had harder texture than the radish. The total amino acid content in the kohlrabi was 2.7-fold higher than that in the radish. Especially hydrophilic amino acids including aspartate, glutamate and arginine, were about 3-fold higher in the kohlrabi, suggesting that the kohlrabi was more palatable than the radish. The total contents of glucosinolates in the radish in inner and outer section were higher than those in the kohlrabi by 12.4- and 28.5-fold, respectively. In a sensory test, the kohlrabi was evaluated less bitter and pungent than the radish. The kohlrabi contained more glucoraphanin, an anticancer compound, than the radish. Furthermore, the sweetness of the kohlrabi was evaluated higher than that of the radish, though kohlrabi contained less reducing sugars, probably due to high contents of hydrophilic amino acids. In conclusion, the kohlrabi was evaluated as more favorable in taste and contained more functional compounds than the radish, and thus it can be a good replacement vegetable for radish.

무의 소비에 있어서 주된 문제점은 glucosinolate에 의한 쓴맛과 매운맛이다. 최근에 무의 문제점을 보완할 수있는 콜라비가 한국에 도입되어 제주도에서 월동재배가 이루어지고 있다. 두 작물의 식감과 맛이 비슷하여 품질을 비교 분석하였다. 콜라비의 환원당, cellulose, pectin의 함량은 무보다 낮았다. 식감은 콜라비가 무보다 더 단단한 것으로 나타났으며, 아미노산의 함량은 콜라비가 무보다 약 2.7배 정도 높았다. 특히 aspartate, glutamate, arginine과 같은 수용성 유리 아미노산의 함량이 무보다 콜라비에서 3배 정도 높게 나타났다. 총 glucosinolate 함량은 콜라비가 무의 내부 보다 12.4배, 외부 보다 28.5배로 각각 낮았다. 관능평가에서 콜라비의 쓴맛과 매운맛이 무보다 적게 나타났다. 항암성분으로 알려진 glucoraphanin은 무 보다 콜라비에 더 많이 함유되어 있는 것으로 나타났다. 콜라비의 환원당 함량이 무에 비해 적음에도 불구하고 관능평가에서 무보다 콜라비가 더 달다는 결과가 나왔다. 이는 무보다 콜라비가 더 많은 수용성 유리 아미노산을 함유하기 때문일 것이라 생각된다. 결과적으로 콜라비는 맛과 기능적인 면에서 무보다 높게 나타나 소비가 증가될 것으로 예상된다.

Keywords

References

  1. Adam, D. and G.C. Carmen. 2000. Bitter taste, phytonutrients, and the consumer. Am. J. Clin. Nutr. 72:1424-35. https://doi.org/10.1093/ajcn/72.6.1424
  2. Bjeldanes, L.F., J.Y. Kim, K.R. Grose, J.C. Bartholomew, and C.A. Bradfield. 1991. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Proc. Nat. Acad. Sci. 88:9543-9547. https://doi.org/10.1073/pnas.88.21.9543
  3. Choi, Y.H., E.K. Yun, and M.Y. Kang. 2000. Comparison of some characteristics relevant to yukwa (fried rice cookie) made by different processing conditions. J. East Asian soc. Dietary life. 10:55-61.
  4. Diana, G.C., M.E. Daxenbichler, and C.H. Van Etten. 1985. Glucosinolates in Radish Cultivars. J. Amer. Soc. Hort. Sci. 110: 634-638.
  5. Divisi, D., D.S. Tommaso, S. Salvemini, M. Garramone, and R. Crisci. 2006. Diet and cancer. Acta. Biomed. 77:118-123.
  6. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  7. Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. 94:10367-10372. https://doi.org/10.1073/pnas.94.19.10367
  8. Gamet, P.L., P. Li, S. Lumeau, G. Cassar, M.A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, and F. Terce. 2000. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60:1426-1433.
  9. Grubb, C.D. and S. Abel. 2006. Glucosinolate metabolism and its control. Trends Plant Sci. 11:89-100. https://doi.org/10.1016/j.tplants.2005.12.006
  10. Grubben, G.J.H. 2004. Vegetables. In: Plant resources of tropical Africa 2. PROTA, Wageningen, Netherlands.
  11. Harbaum, B., E.M. Hubbermann, C. Wolff, R. Herges, Z. Zhu, and K. Schwarz. 2007. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by $HPLC-ESI-MS^{n}$ and NMR and their quantification by HPLC-DAD. J. Agric. Food Chem. 55:8251-8260. https://doi.org/10.1021/jf071314+
  12. Hayes, J.D., M.O. Kelleher, and I.M. Eggleston. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 47:73-88. https://doi.org/10.1007/s00394-008-2009-8
  13. Iori, R., R. Bernardi, D. Gueyrard, P. Rollin, and S. Pilmieri. 1999. Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: a chemoenzymatic route to sulforaphane. Bioorg. Med. Chem. Lett. 9:1047-1048. https://doi.org/10.1016/S0960-894X(99)00136-5
  14. ISO Norm. 1992. Rapeseed - determination of glucosinolates content - Part 1: Method using high-performance liquid chromatography. ISO 9167-1. p. 1-9.
  15. Kaaber, L., K. Kaack, T. Kriznik, E. Brathena, and S.H. Knutsen. 2007. Structure of pectin in relation to abnormal hardness after cooking in pre-peeled, cool-stored potatoes. LWT-Food Sci. Technol. 40:921-929. https://doi.org/10.1016/j.lwt.2006.03.026
  16. Kim, D.W., O. Bobleter, and G. Bonn. 1986. Enzymatic hydrolysis of cellulose and plant biomass. Kor. Chem. Eng. Res. 24:53-62.
  17. Lee, J.M. and H.J. Chung. 1999. Physicochemical and sensory characteristics of snack using cham shwi (Aster acaber). Kor. J. dietary cult. 14:49-55.
  18. Liu, S., W.C. Willett, J.E. Manson, F.B. Hu, B. Rosner, and G. Colditz. 2003. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 78:920-927. https://doi.org/10.1093/ajcn/78.5.920
  19. Manabe, M. and J. Naohara. 1986. Properties of pectin in Satsuma mandarin fruits (Citrus Unshiu Marc). J. Jpn. Soc. Food. Sci. Tech. 33:602-608. https://doi.org/10.3136/nskkk1962.33.8_602
  20. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. https://doi.org/10.1021/ac60147a030
  21. Mithen, R.F., M.Dekker, R. Verkerk, S. Rabot, and I.T. Johnson. 2000. The nutritional significance, biosynthesis and bioavailibility of glucosinolates in human food, The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. J. Sci. Food Agric. 80:967-984. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V
  22. Shallenberger, R.S. 1993. Taste chemistry. Blackie Academic & Professional. New York Agricultural Experiment Station, Cornell Univ. Geneva, New York, USA.
  23. Terry, P., E. Giovannucci, K.B. Michels, L. Bergkvist, H. Hansen, L. Holmberg, and A. Wolk. 2001. Fruit and vegetables, dietary fiber, and risk of colorectal cancer. J. Natl. Cancer. Inst. 93:525-533. https://doi.org/10.1093/jnci/93.7.525
  24. The Korean Society of Food Science and Nutrition. 2000. Handbook of experiments in food science and nutrition. Hyoil, Seoul, Korea.
  25. Visentin, M,, A. Tava, R. Iori, and S. Palmieri. 1992. Isolation and Identification of trans-4- (Methylthio) -3-butenyl Glucosinolate from Radish Roots (Raphanus sativus L.). J. Agric. Food Chem. 40:1687-1691. https://doi.org/10.1021/jf00021a041