The Suppressive Effects of Calcium Compounds against Botrytis cinerea in Paprika

파프리카 양액재배에서 발생하는 잿빛곰팡이병 방제에 대한 칼슘제제의 효과

  • Yoon, Cheol-Soo (Department of Plant Science, Gangneung-Wonju National University) ;
  • Yeoung, Young-Rog (Department of Plant Science, Gangneung-Wonju National University) ;
  • Kim, Byung-Sup (Department of Plant Science, Gangneung-Wonju National University)
  • 윤철수 (강릉원주대학교 식물생명과학과) ;
  • 용영록 (강릉원주대학교 식물생명과학과) ;
  • 김병섭 (강릉원주대학교 식물생명과학과)
  • Received : 2010.01.25
  • Accepted : 2010.09.28
  • Published : 2010.12.31

Abstract

Plant diseases including gray mold caused by Botrytis cinerea are often reduced when calcium compounds are used as alternative materials in paprika. However, much less information is available about the effects of calcium compounds on controlling of $B.$ $cinerea$. Seven calcium compounds such as calcium sulfate dihydrate, calcium chloride, calcium nitrate, calcium oxide, calcium hydroxide, calcium carbonate, and calcium hydride were evaluated for their effectiveness against $B.$ $cinerea$ on potato dextrose agar medium. The pH of selected calcium compounds was higher (pH 8.2-10) than that of the control (pH 6.6). Calcium carbonate, calcium oxide, calcium hydride, and calcium hydroxide among seven calcium compounds were more effectively inhibited the growth of $B.$ $cinerea$ than other calcium compounds. In the case of spraying the spore suspension on paprika applied with the selected four calcium compounds and supplied with the selected calcium supplements in a hydroponic culture system, the paprika treated with calcium compounds showed less severity of disease than those untreated plants. On the basis of our results, we propose that the suppressive effects of calcium compounds on $B.$ $cinerea$ in paprika resulted from the supply of calcium and a certain degree of salt stress.

본 실험은 7가지의 칼슘제제; calcium sulfate dihydrate, calcium chloride, calcium nitrate, calcium oxide, calcium hydroxide, calcium carbonate, calcium hydride가 포함된 PDA배지에서 잿빛곰팡이 균의 방제효과를 알고자 실시되었다. 선발된 칼슘제제의 pH는 8.2-10으로 대조구인 pH 6.6보다는 높게 측정되었다. 7가지 칼슘제제가 포함된 PDA배지에서의 잿빛곰팡이병 방제 colony size(mm) 결과는 calcium carbonate, calcium oxide, calcium hydride, calcium hydroxide가 다른 칼슘제제들 보다 잿빛곰팡이병 억제에 효과가 좋았다. 선택된 4개의 칼슘제제를 식물체에 처리 한 후 잿빛곰팡이병의 포자를 살포한 실험과 희석된 4개의 칼슘제제)를 표준 양액재배에 첨부하여 한 달간 양액을 공급한 후 잿빛곰팡이병의 포자를 접종한 실험결과는 칼슘제제를 처리하지 않은 대조구보다는 칼슘제제를 처리한 실험구에서 잿빛곰팡이병의 발생률이 대체적으로 낮았다. 칼슘제제를 처리한 파프리카 식물체에서 잿빛곰팡이병 억제에 대하여서는 칼슘제제 처리에 따른 어느 정도의 염기스트레스의 영향 등으로 볼 수가 있겠다.

Keywords

References

  1. Chardonnet, C.O., C.E. Sams, and W.S. Conway. 1999. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochem. 52:967-973. https://doi.org/10.1016/S0031-9422(99)00315-5
  2. Charlotte, C. and B. Doneche. 2002. Purification and characterization of two isozymes of polygalacturonase from Botrytis cinerea. Effect of calcium ions on polygalacturonase activity. Microbiol. Res. 157:183-189. https://doi.org/10.1078/0944-5013-00147
  3. Elad, Y., H. Yunis, and H. Volpin. 1993. Effect of nutrition on susceptibility of cucumber, eggplant, and pepper crops to Botrytis cinerea. Can. J. Botany 71:602-608. https://doi.org/10.1139/b93-069
  4. Guillem, S., C. Eva, B. Celia, A. Mannuel, and T. Isabel. 2007. The suppressive effects of composts used as growth media against Botrytis cinerea in cucumber plants. J. Eur. Plant Pathol. 117:393-402. https://doi.org/10.1007/s10658-007-9108-x
  5. McLaughlin, R.J., M.E. Wisniewski, C.L. Wilson, and E. Chalutz. 1990. Effect of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida sp. J. Phytopathol. 80:456-461. https://doi.org/10.1094/Phyto-80-456
  6. Mikani, A., H.R. Etebarian, P.L. Sholberg, D.T.O. Gorman, S. Stokes, and A. Alizadeh. 2008. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Posthar. Biol. and Technol. 48:107-112. https://doi.org/10.1016/j.postharvbio.2007.09.020
  7. Raposo, R., J. Delcan, V. Gomez, and P. Melgarejo. 1996. Distribution and fitness of isolates of Botrytis cinerea with multiple fungicides resistance in Spanish greenhouses. Plant Pathol. 45:497-505. https://doi.org/10.1046/j.1365-3059.1995.d01-140.x
  8. Stanghellini, M.E., S.L. Rasmussen, D.H. Kim, and P.A. Rorabaugh. 1996. Efficacy of nonionic surfactant in the control of zoospore spread of Pythium aphanidermatum in a recirculating hydroponic system. Plant Dis. 80:422-428. https://doi.org/10.1094/PD-80-0422
  9. Sugimoto, T., M. Anio, M. Sugimoto, and K. Watanabe. 2005. Reduction of Phytophthora stem rot disease soybeans by the application of $CaCl_{2}$ and $Ca(NO_{3})_{2}$. J. Phytopathol. 153:536-543. https://doi.org/10.1111/j.1439-0434.2005.01016.x
  10. Volpin, G. and Y. Elad. 1991. Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytophthol. 81:1390-1394. https://doi.org/10.1094/Phyto-81-1390
  11. Wojcik, P. and M. Lewandowski. 2003. Effect of calcium and boron sprays on yield and quality of "Elsanta" strawberry. J. Plant Nutr. 26:671-682. https://doi.org/10.1081/PLN-120017674
  12. Yoon, C.S., E.H. Ju, Y.R. Yeoung, and B.S. Kim. 2008. Survey of fungicide resistance for chemical control of Botrytis cinerea on Paprika. J. Plant Pathol. 24:447-452. https://doi.org/10.5423/PPJ.2008.24.4.447