Cryopreservation of Oocytes and Embryos by Vitrification

유리화 방법에 의한 난자와 수정란의 동결보존

  • Received : 2010.12.18
  • Accepted : 2010.12.24
  • Published : 2010.12.31

Abstract

Life can be kept in suspended animation either before fertilization at oocyte stage or after fertilization at different stages of embryonic development for a variety of reasons. It not only has potential applications in fertility preservation and management in human but also has important roles in the preservation and management of animal genetic resources, low-cost international movement of selected genetics, and rapid dissemination of germplasm through assisted reproductive technologies (ART) and genetic engineering. Currently, slow-freezing and vitrification are the two approaches by which oocytes and embryos can be cryopreserved for long-term storage. Both of these methods have their own advantages and disadvantages but allow the cryopreservation of oocytes and embryos with comparable efficiency. Vitrification of oocyte and embryos, although proven successful just 13 years after slow-freezing, is generally considered an emerging technology and appears to slow gain acceptance in both animal and human ART despite having controversial storage and contamination issues. In this manuscript, we discuss the basic techniques of oocyt/embryo cryopreservation and review the current status and recent developments in vitrification.

최근 동결기술이 발달하면서 다양한 목적에 따라 초기 발생단계, 특히 수정 전후의 난자나 수정란의 생명을 연장하는 것이 가능해졌다. 이러한 난자나 수정란의 보존기술은 인간의 수정능력을 배가시키거나 임신조절에서 응용되고 있으며, 동물에서는 우수한 유전자원의 보존과 운영, 저렴한 국제간 운송수단, 그리고 생식보조기술과 유전공학 등의 연구에 필요한 생식세포의 공급하는 데서도 중요하게 활용되고 있다. 최근 개발된 완만동결과 유리화 동결방법은 난자와 수정란을 장기간 동결하여 보존하는데 활용하는 주요 기술이다. 이러한 방법들은 각각 장점과 단점을 가지고 있지만, 상당한 수준의 효율성이 입증되어 실용화되어 있는 실정이다. 무엇보다도 유리화 방법은 완만동결 방법보다 13년이나 늦게 개발되었으나 보다 우수한 기술로 인정을 받고 있다. 비록 유리화 동결은 아직 대한 상반된 의견과 오염문제가 있지만 인간과 동물의 생식보조기술로 활용되는 빈도가 점차 많아지고 있는 실정이다. 따라서 본 원고에서는 먼저 난자와 수정란의 동결보존에 대한 기초적인 기술에 대해서 고찰한 다음, 유리화 동결에 관 한 최근의 연구동향에 대해서 종합적으로 검토하고자 한다.

Keywords

References

  1. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949; 164: 666. https://doi.org/10.1038/164666a0
  2. Whittingham DG. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at --196 degrees C. J Reprod Fertil 1977; 49: 89-94. https://doi.org/10.1530/jrf.0.0490089
  3. Wilmut I, Rowson LE. Experiments on the low-temperature preservation of cow embryos. Vet Rec 1973; 92: 686-90. https://doi.org/10.1136/vr.92.26.686
  4. Willadsen SM, Polge C, Rowson LE, Moor RM. Deep freezing of sheep embryos. J Reprod Fertil 1976; 46: 151-4. https://doi.org/10.1530/jrf.0.0460151
  5. Bilton RJ, Moore NW. In vitro culture, storage and transfer of goat embryos. Aust J Biol Sci 1976; 29: 125-9.
  6. Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB. Cryopreservation of porcine embryos. Nature 1995; 374: 416. https://doi.org/10.1038/374416a0
  7. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983; 305: 707-9. https://doi.org/10.1038/305707a0
  8. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 1985; 313: 573-5. https://doi.org/10.1038/313573a0
  9. Ashwood-Smith MJ. The cryopreservation of human embryos. Hum Reprod 1986; 1: 319-32. https://doi.org/10.1093/oxfordjournals.humrep.a136413
  10. Kim EY. Effect of vitrification method on the in vitro/in vivo development of bovine follicular oocytes [dissertation]. Seoul (Korea): Konkuk Univ.; 2003.
  11. Kim YM. Development of a new vitrification container of bovine embryo freezing [dissertation]. Seoul (Korea): Konkuk Univ.; 2004.
  12. Peura TT, Hartwich KM, Hamilton HM, Walker SK. No differences in sheep somatic cell nuclear transfer outcomes using serum-starved or actively growing donor granulosa cells. Reprod Fertil Dev 2003; 15: 157-65. https://doi.org/10.1071/RD02092
  13. Kobayashi S, Takei M, Kano M, Tomita M, Leibo SP. Piglets produced by transfer of vitrified porcine embryos after stepwise dilution of cryoprotectants. Cryobiology 1998; 36: 20-31. https://doi.org/10.1006/cryo.1997.2056
  14. Shalom-Paz E, Almog B, Shehata F, Huang J, Holzer H, Chian RC, et al. Fertility preservation for breast-cancer patients using IVM followed by oocyte or embryo vitrification. Reprod Biomed Online 2010; 21: 566-71. https://doi.org/10.1016/j.rbmo.2010.05.003
  15. Sherman JK, Lin TP. Survival of unfertilized mouse eggs during freezing and thawing. Proc Soc Exp Biol Med 1958; 98: 902-5. https://doi.org/10.3181/00379727-98-24224
  16. Parkening TA, Tsunoda Y, Chang MC. Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen-thawed mouse eggs. J Exp Zool 1976; 197: 369-74. https://doi.org/10.1002/jez.1401970310
  17. Chen C. Pregnancy after human oocyte cryopreservation.Lancet 1986; 1: 884-6.
  18. van Uem JF, Siebzehnrubl ER, Schuh B, Koch R, Trotnow S, Lang N. Birth after cryopreservation of unfertilized oocytes. Lancet 1987; 1: 752-3.
  19. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 1997; 68: 724-6. https://doi.org/10.1016/S0015-0282(97)00268-9
  20. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology 1984; 21: 407-26. https://doi.org/10.1016/0011-2240(84)90079-8
  21. Vajta G, Nagy ZP, Cobo A, Conceicao J, Yovich J. Vitrification in assisted reproduction: myths, mistakes, disbeliefs and confusion. Reprod Biomed Online 2009; 19 Suppl 3: 1-7.
  22. Dinnyes A, Dai Y, Jiang S, Yang X. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 2000; 63: 513-8. https://doi.org/10.1095/biolreprod63.2.513
  23. Gupta MK, Uhm SJ, Lee HT. Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification. Theriogenology 2007; 67: 238-48. https://doi.org/10.1016/j.theriogenology.2006.07.015
  24. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 2005; 11: 300-8. https://doi.org/10.1016/S1472-6483(10)60837-1
  25. Berthelot F, Martinat-Botte F, Locatelli A, Perreau C, Terqui M. Piglets born after vitrification of embryos using the open pulled straw method. Cryobiology 2000; 41: 116-24. https://doi.org/10.1006/cryo.2000.2273
  26. Kuleshova LL, Shaw JM. A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum Reprod 2000; 15: 2604-9. https://doi.org/10.1093/humrep/15.12.2604
  27. Ryu CS. Cryopreservation of bovine mature and immature oocytes by ultra-rapid cooling [dissertation]. Seoul (Korea): Konkuk Univ.; 2000.
  28. Nakao K, Nakagata N, Katsuki M. Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Exp Anim 1997; 46: 231-4. https://doi.org/10.1538/expanim.46.231
  29. Landa V, Tepla O. Cryopreservation of mouse 8-cell embryos in microdrops. Folia Biol (Praha) 1990; 36: 153-8.
  30. Kim DH, Park HS, Kim SW, Hwang IS, Yang BC, Im GS, et al. Vitrification of immature bovine oocytes by the microdrop method. J Reprod Dev 2007; 53: 843-51. https://doi.org/10.1262/jrd.18155
  31. Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod 1996; 54: 1059-69. https://doi.org/10.1095/biolreprod54.5.1059
  32. Fujino Y, Kojima T, Nakamura Y, Kobayashi H, Kikuchi K, Funahashi H. Metal mesh vitrification (MMV) method for cryopreservation of porcine embryos. Theriogenology 2008; 70: 809-17. https://doi.org/10.1016/j.theriogenology.2008.05.045
  33. Arav A, Zeron Y. Vitrification of bovine oocytes using modified minimum drop size technique (MDS) is efffected by the composition and the concentration of the vitrification solution and by teh cooling conditions. Theriogenology 1997; 47: 341. https://doi.org/10.1016/S0093-691X(97)82468-5
  34. Lane M, Bavister BD, Lyons EA, Forest KT. Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol 1999; 17: 1234-6. https://doi.org/10.1038/70795
  35. Larman MG, Sheehan CB, Gardner DK. Vitrification of mouse pronuclear oocytes with no direct liquid nitrogen contact. Reprod Biomed Online 2006; 12: 66-9. https://doi.org/10.1016/S1472-6483(10)60982-0
  36. Lee YJ. Development of in vitro produced bovine embryos after vitrification with various containers [dissertation]. Seoul (Korea): Konkuk Univ.; 2002.
  37. Liebermann J, Tucker MJ. Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction 2002; 124: 483-9. https://doi.org/10.1530/rep.0.1240483
  38. Vajta G, Lewis IM, Kuwayama M, Greve T, Callesen H. Sterile application of the Open Pulled Straw (OPS) vitrification method. Cryo-Letters 1998; 19: 389-92.
  39. Isachenko V, Alabart JL, Nawroth F, Isachenko E, Vajta G, Folch J. The open pulled straw vitrification of ovine GVoocytes: positive effect of rapid cooling or rapid thawing or both? Cryo Letters 2001; 22: 157-62.
  40. Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 2001; 16: 2350-6. https://doi.org/10.1093/humrep/16.11.2350
  41. Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ. Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reprod Biomed Online 2002; 4: 146-50. https://doi.org/10.1016/S1472-6483(10)61932-3
  42. Kuwayama M, Vajta G, Ieda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 2005; 11: 608-14. https://doi.org/10.1016/S1472-6483(10)61169-8
  43. Ebrahimi B, Valojerdi MR, Eftekhari-Yazdi P, Baharvand H. In vitro maturation, apoptotic gene expression and incidence of numerical chromosomal abnormalities following cryotop vitrification of sheep cumulus-oocyte complexes. J Assist Reprod Genet 2010; 27: 239-46. https://doi.org/10.1007/s10815-010-9401-z
  44. Kuwayama M, Kato O. All-round vitrification method for human oocytes and embryos [Abstract]. J Assist Reprod Genet 2000; 17: 477.
  45. Zhou XL, Al Naib A, Sun DW, Lonergan P. Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development. Cryobiology 2010; 61: 66-72. https://doi.org/10.1016/j.cryobiol.2010.05.002
  46. Quinn P. Vitrification of human oocytes with different tools. In: Chian RC, Quinn P, editors. Fertility Preservation. New York: Cambridge University Press; 2010. p.131-43.
  47. Hamawaki A, Kuwayama M, Hamano S. Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology 1999; 51: 165. https://doi.org/10.1016/S0093-691X(99)91724-7
  48. Vanderzwalmen P, Bertin G, Debauche C, Standaert V, Schoysman R. In vitro survival of metaphase II oocytes and blastocysts after vitrificationi in an Hemi Straw (HS) system. Fertil Steril 2000; 74 (Suppl): 215.
  49. Sugiyama R, Nakagawa K, Shirai A, Nishi Y, Kuribayashi Y, Inoue M. Clinical outcomes resulting from the transfer of vitrified human embryos using a new device for cryopreservation (plastic blade). J Assist Reprod Genet 2010; 27: 161 -7. https://doi.org/10.1007/s10815-010-9390-y
  50. Tsang WH, Chow KL. Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. Biotechniques 2009; 46: 550-2. https://doi.org/10.2144/000113125
  51. Matsumoto H, Jiang JY, Tanaka T, Sasada H, Sato E. Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology 2001; 42: 139-44. https://doi.org/10.1006/cryo.2001.2309
  52. Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and betamercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 2010; 93: 2602-7. https://doi.org/10.1016/j.fertnstert.2010.01.043
  53. Arav A, Yavin S, Zeron Y, Natan D, Dekel I, Gacitua H. New trends in gamete's cryopreservation. Mol Cell Endocrinol 2002; 187: 77-81. https://doi.org/10.1016/S0303-7207(01)00700-6
  54. Yavin S, Aroyo A, Roth Z, Arav A. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Hum Reprod 2009; 24: 797-804.
  55. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online 2009; 18: 799-810. https://doi.org/10.1016/S1472-6483(10)60029-6
  56. Van Den Berg L, Soliman FS. Effect of glycerol and dimethyl sulfoxide on changes in composition and pH of buffer salt solutions during freezing. Cryobiology 1969; 6: 93-7. https://doi.org/10.1016/S0011-2240(69)80469-4
  57. Sieracki NA, Hwang HJ, Lee MK, Garner DK, Lu Y. A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Commun (Camb) 2008: 823-5.
  58. Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science 1972; 178: 411-4. https://doi.org/10.1126/science.178.4059.411
  59. Kola I, Kirby C, Shaw J, Davey A, Trounson A. Vitrification of mouse oocytes results in aneuploid zygotes and malformed fetuses. Teratology 1988; 38: 467-74. https://doi.org/10.1002/tera.1420380510
  60. Gook DA, Osborn SM, Bourne H, Johnston WI. Fertilization of human oocytes following cryopreservation; normal karyotypes and absence of stray chromosomes. Hum Reprod 1994; 9: 684-91. https://doi.org/10.1093/oxfordjournals.humrep.a138572
  61. Huang JYJ CH, Tan SL, Chian RC. Effects of osmotic stress and cryoprotectant toxicity on mouse oocyte fertilization and subsequent embryonic development in vitro. Cell Preserv Technol 2006;4:149-60. https://doi.org/10.1089/cpt.2006.4.149
  62. Du Y, Pribenszky CS, Molnar M, Zhang X, Yang H, Kuwayama M, et al. High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification. Reproduction 2008; 135: 13-7. https://doi.org/10.1530/REP-07-0362
  63. Pribenszky C, Molnar M, Cseh S, Solti L. Improving postthaw survival of cryopreserved mouse blastocysts by hydrostatic pressure challenge. Anim Reprod Sci 2005; 87: 143-50. https://doi.org/10.1016/j.anireprosci.2004.09.007
  64. Wright DL, Eroglu A, Toner M, Toth TL. Use of sugars in cryopreserving human oocytes. Reprod Biomed Online 2004; 9: 179-86. https://doi.org/10.1016/S1472-6483(10)62127-X
  65. Eroglu A, Toner M, Toth TL. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 2002; 77: 152-8. https://doi.org/10.1016/S0015-0282(01)02959-4
  66. Eroglu A, Elliott G, Wright DL, Toner M, Toth TL. Progressive elimination of microinjected trehalose during mouse embryonic development. Reprod Biomed Online 2005; 10: 503-10. https://doi.org/10.1016/S1472-6483(10)60828-0
  67. Lane M, Maybach JM, Hooper K, Hasler JF, Gardner DK. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev 2003; 64: 70-8. https://doi.org/10.1002/mrd.10210
  68. Stachecki JJ, Cohen J, Willadsen SM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology 1998; 37: 346-54. https://doi.org/10.1006/cryo.1998.2130
  69. Silvestre MA, Yaniz J, Salvador I, Santolaria P, Lopez-Gatius F. Vitrification of pre-pubertal ovine cumulus-oocyte complexes: effect of cytochalasin B pre-treatment. Anim Reprod Sci 2006; 93: 176-82. https://doi.org/10.1016/j.anireprosci.2005.08.006
  70. Fu XW, Shi WQ, Zhang QJ, Zhao XM, Yan CL, Hou YP, et al. Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes. Anim Reprod Sci 2009; 115: 158-68. https://doi.org/10.1016/j.anireprosci.2008.12.002
  71. Yan CL, Fu XW, Zhou GB, Zhao XM, Suo L, Zhu SE. Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol pretreatment and relationship to competence. Fertil Steril 2010; 93: 959-66. https://doi.org/10.1016/j.fertnstert.2008.12.045
  72. Ogawa B, Ueno S, Nakayama N, Matsunari H, Nakano K, Fujiwara T, et al. Developmental ability of porcine in vitro matured oocytes at the meiosis II stage after vitrification. J Reprod Dev 2010; 56: 356-61. https://doi.org/10.1262/jrd.10-005H
  73. Morato R, Mogas T, Maddox-Hyttel P. Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification. Mol Reprod Dev 2008; 75: 1318-26. https://doi.org/10.1002/mrd.20873
  74. Zhang J, Nedambale TL, Yang M, Li J. Improved development of ovine matured oocyte following solid surface vitrification (SSV): effect of cumulus cells and cytoskeleton stabilizer. Anim Reprod Sci 2009; 110: 46-55. https://doi.org/10.1016/j.anireprosci.2007.12.023
  75. Fuchinoue K, Fukunaga N, Chiba S, Nakajo Y, Yagi A, Kyono K. Freezing of human immature oocytes using cryoloops with Taxol in the vitrification solution. J Assist Reprod Genet 2004; 21: 307-9. https://doi.org/10.1023/B:JARG.0000043705.63523.68
  76. Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved postthawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75: 1177-84. https://doi.org/10.1016/S0015-0282(01)01809-X
  77. Kasai M, Hamaguchi Y, Zhu SE, Miyake T, Sakurai T, Machida T. High survival of rabbit morulae after vitrification in an ethylene glycol-based solution by a simple method. Biol Reprod 1992; 46: 1042-6. https://doi.org/10.1095/biolreprod46.6.1042
  78. Baudot A, Alger L, Boutron P. Glass-forming tendency in the system water-dimethyl sulfoxide. Cryobiology 2000; 40: 151-8. https://doi.org/10.1006/cryo.2000.2234
  79. Lucena E, Bernal DP, Lucena C, Rojas A, Moran A, Lucena A. Successful ongoing pregnancies after vitrification of oocytes. Fertil Steril 2006; 85: 108-11. https://doi.org/10.1016/j.fertnstert.2005.09.013
  80. Kim TJ, Hong SW. Successful live birth from vitrified oocytes after 5 years of cryopreservation. J Assist Reprod Genet. In press 2010.
  81. Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C. Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 2000; 40: 110-6. https://doi.org/10.1006/cryo.1999.2227
  82. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, et al. Hepatitis B transmission from contaminated cryopreservation tank. Lancet 1995; 346: 137 -40. https://doi.org/10.1016/S0140-6736(95)91207-X
  83. Rall WF, Meyer TK. Zona fracture damage and its avoidance during the cryopreservation of mammalian embryos. Theriogenology 1989; 31: 683-92. https://doi.org/10.1016/0093-691X(89)90251-3
  84. Eroglu A, Toner M, Leykin L, Toth TL. Cytoskeleton and polyploidy after maturation and fertilization of cryopreserved germinal vesicle-stage mouse oocytes. J Assist Reprod Genet 1998; 15: 447-54. https://doi.org/10.1007/BF02744940
  85. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod 2008; 23: 1976-82. https://doi.org/10.1093/humrep/den222
  86. Guerif F, Bidault R, Cadoret V, Couet ML, Lansac J, Royere D. Parameters guiding selection of best embryos for transfer after cryopreservation: a reappraisal. Hum Reprod 2002; 17: 1321-6. https://doi.org/10.1093/humrep/17.5.1321
  87. Park KE, Kwon IK, Han MS, Niwa K. Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J Reprod Dev 2005; 51: 151-60. https://doi.org/10.1262/jrd.51.151
  88. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes.Reproduction 2006; 131: 53-61. https://doi.org/10.1530/rep.1.00878
  89. Rizos D, Gutierrez-Adan A, Perez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod 2003; 68: 236-43. https://doi.org/10.1095/biolreprod.102.007799
  90. Boonkusol D, Gal AB, Bodo S, Gorhony B, Kitiyanant Y, Dinnyes A. Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Mol Reprod Dev 2006; 73: 700-8. https://doi.org/10.1002/mrd.20450
  91. Dhali A, Anchamparuthy VM, Butler SP, Pearson RE, Mullarky IK, Gwazdauskas FC. Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology 2009; 71: 1408-16. https://doi.org/10.1016/j.theriogenology.2009.01.011
  92. Kader A, Sharma RK, Falcone T, Agarwal A. Mouse blastocyst previtrification interventions and DNA integrity. Fertil Steril 2010; 93: 1518-25. https://doi.org/10.1016/j.fertnstert.2009.02.017
  93. Chian RC, Huang JY, Tan SL, Lucena E, Saa A, Rojas A, et al. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod Biomed Online 2008; 16: 608-10. https://doi.org/10.1016/S1472-6483(10)60471-3
  94. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 2009; 18: 769-76. https://doi.org/10.1016/S1472-6483(10)60025-9
  95. Papadopoulos S, Rizos D, Duffy P, Wade M, Quinn K, Boland MP, et al. Embryo survival and recipient pregnancy rates after transfer of fresh or vitrified, in vivo or in vitro produced ovine blastocysts. Anim Reprod Sci 2002; 74: 35 -44. https://doi.org/10.1016/S0378-4320(02)00162-8
  96. Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P. Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 2002; 62: 320-7. https://doi.org/10.1002/mrd.10138
  97. Rizos D, Ward F, Boland MP, Lonergan P. Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 2001; 56: 1-16. https://doi.org/10.1016/S0093-691X(01)00538-6
  98. Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online 2004; 9: 152-63. https://doi.org/10.1016/S1472-6483(10)62124-4
  99. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 2006; 12: 779-96. https://doi.org/10.1016/S1472-6483(10)61091-7
  100. Lim JM, Fukui Y, Ono H. The post-thaw developmental capacity of frozen bovine oocytes following in vitro maturation and fertilization. Theriogenology 1991; 35: 1225-35. https://doi.org/10.1016/0093-691X(91)90368-N
  101. Hiraoka K, Kinutani M, Kinutani K. Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod 2004; 19: 2884-8. https://doi.org/10.1093/humrep/deh504
  102. Mukaida T, Oka C, Goto T, Takahashi K. Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum Reprod 2006; 21: 3246-52. https://doi.org/10.1093/humrep/del285
  103. Al-Hasani S, Ozmen B, Koutlaki N, Schoepper B, Diedrich K, Schultze-Mosgau A. Three years of routine vitrification of human zygotes: is it still fair to advocate slow-rate freezing? Reprod Biomed Online 2007; 14: 288-93.
  104. Benagiano G, Gianaroli L. The Italian Constitutional Court modifies Italian legislation on assisted reproduction technology. Reprod Biomed Online 2010; 20: 398-402. https://doi.org/10.1016/j.rbmo.2009.11.025
  105. Belva F, Henriet S, Van den Abbeel E, Camus M, Devroey P, Van der Elst J, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod 2008; 23: 2227-38. https://doi.org/10.1093/humrep/den254
  106. Takahashi K, Mukaida T, Goto T, Oka C. Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-year follow-up study. Fertil Steril 2005; 84: 88-92. https://doi.org/10.1016/j.fertnstert.2004.12.051
  107. Zhao XM, Quan GB, Zhou GB, Hou YP, Zhu SE. Conventional freezing, straw, and open-pulled straw vitrification of mouse two pronuclear (2-PN) stage embryos. Anim Biotechnol 2007; 18: 203-12. https://doi.org/10.1080/10495390701201663
  108. Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, et al. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online 2009; 19 Suppl 3: 17-27. https://doi.org/10.1016/S1472-6483(10)60280-5