A study on the Degradation and By-products Formation of NDMA by the Photolysis with UV: Setup of Reaction Models and Assessment of Decomposition Characteristics by the Statistical Design of Experiment (DOE) based on the Box-Behnken Technique

UV 공정을 이용한 N-Nitrosodimethylamine (NDMA) 광분해 및 부산물 생성에 관한 연구: 박스-벤켄법 실험계획법을 이용한 통계학적 분해특성평가 및 반응모델 수립

  • Chang, Soon-Woong (Department of Environmental-Energy System Engineering, Gyonggi University) ;
  • Lee, Si-Jin (Department of Environmental-Energy System Engineering, Gyonggi University) ;
  • Cho, Il-Hyoung (Department of Environmental-Energy System Engineering, Gyonggi University)
  • 장순웅 (경기대학교 환경에너지시스템공학과) ;
  • 이시진 (경기대학교 환경에너지시스템공학과) ;
  • 조일형 (경기대학교 환경에너지시스템공학과)
  • Received : 2009.09.24
  • Accepted : 2009.12.18
  • Published : 2010.01.31

Abstract

We investigated and estimated at the characteristics of decomposition and by-products of N-Nitrosodimethylamine (NDMA) using a design of experiment (DOE) based on the Box-Behken design in an UV process, and also the main factors (variables) with UV intensity($X_2$) (range: $1.5{\sim}4.5\;mW/cm^2$), NDMA concentration ($X_2$) (range: 100~300 uM) and pH ($X_2$) (rang: 3~9) which consisted of 3 levels in each factor and 4 responses ($Y_1$ (% of NDMA removal), $Y_2$ (dimethylamine (DMA) reformation (uM)), $Y_3$ (dimethylformamide (DMF) reformation (uM), $Y_4$ ($NO_2$-N reformation (uM)) were set up to estimate the prediction model and the optimization conditions. The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were $Y_1$ [% of NDMA removal] = $117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$= 96%, Adjusted $R^2$ = 88%) and 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2$ [DMA conc] = $-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2+0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%) and 35.2 uM ($X_1$: 3 $mW/cm^2$, $X_2$: 220 uM, $X_3$: 6.3), $Y_3$ [DMF conc] = $-6.2+0.2X_1+0.02X_2+2X_3-0.26X_1^2-0.01X_2^2-0.2X_3^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, Adjusted $R^2$ = 94.4%) and 3.7 uM ($X_1:\;4.5\;$mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$) and $Y_4$ [$NO_2$-N conc] = $-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, Adjusted $R^2$ = 95.7%) and 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). This study has demonstrated that the response surface methodology and the Box-Behnken statistical experiment design can provide statistically reliable results for decomposition and by-products of NDMA by the UV photolysis and also for determination of optimum conditions. Predictions obtained from the response functions were in good agreement with the experimental results indicating the reliability of the methodology used.

본 연구는 광분해 산화공정으로 난분해성 물질인 N-Nitrosodimethylamine (NDMA)인 제거 및 부산물 생성 특성을 파악하기 위한 3개의 독립변수 (자외선 강도($X_1:\;1.5{\sim}4.5\;mW/cm^2$, 초기 NDMA 농도($X_2:\;100{\sim}300\;uM$), pH(X3:3~9))와 4개의 종속변수(NDMA 제거율($Y_1$), dimethylamine (DMA) 생성농도($Y_2$), dimethylformamide (DMF) 생성농도($Y_3$) 및 $NO_2$-N 생성농도($Y_4$))로 구성된 박스-벤켄 설계를 이용한 실험계획을 적용시켜 예측 모델과 광분해 산화 최적조건을 수립하였다. 실험결과 2시간 광분해 후 NDMA는 거의 완전히 제거되었으며 DMA, DMF와 $NO_2$-N은 NDMA 광분해와 동시에 부산물로 생성되었다. 광분해 최적의 조건을 얻기 위해 정준분석을 수행하여 최적 점 (반응값, 독립변수 조건)과 예측반응모델을 수립한 결과, 다음과 같은 결과를 얻었다 ($Y_1=117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$ = 96%, Adjusted $R^2$ = 88%)와 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2=-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2-0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%)와 35.2 uM ($X_1:\;3\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;6.3$), $Y_3=-6.2+0.2X_1+0.02X_2+2X_3-{0.26X_1}^2-{0.01X_2}^2-{0.2X_3}^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, 수정 $R^2$ = 94.4%)와 3.7 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$), $Y_4=-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, 수정 $R^2$ = 95.7%)와 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). 반응표면분석법 중 하나인 박스-벤켄법은 UV 광분해에 의한 NDMA 분해 및 부산물 생성에 대한 통계학적 및 수학적인 결과 및 최적의 운전조건을 제시하였다. 예측모델의 검정을 통하여 박스-벤켄법은 매우 높은 신뢰성을 보였다.

Keywords

References

  1. Andrzejewski, P., Hordern, B. K., Nawrocki, J. "The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants,"Desalination, 176(1-3), 37-45(2005). https://doi.org/10.1016/j.desal.2004.11.009
  2. Choi, J., Valentine, R. L.," Formation of Nnitrosodimethylamine (NDMA): a new disinfection by-product,"Water Res., 36(4), 817-824(2002). https://doi.org/10.1016/S0043-1354(01)00303-7
  3. Chung, J., Ahn, C. H., Chen, Z., Rittmann, B. E.," Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor,"Chemosphere, 70(3), 516-520 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.016
  4. Lee, C., Yoon, J., Von Gunten, U.," Oxidative degradation of Nnitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide," 41(3), 581-590(2007). https://doi.org/10.1016/j.watres.2006.10.033
  5. Lee, C., Lee, Y., Schmidt, C., Yoon, J., Gunten, U. V., "Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters,"Water Res., 42(1-2), 433-441(2008). https://doi.org/10.1016/j.watres.2007.07.035
  6. Andrzejewski P, Nawrocki J., "N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA),"Water Res., 43(5), 1219-1228(2008).
  7. Box G, Hunter W.G. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, Wiley, 1987.
  8. Stefan, Mihaela I., Bolton, James. R., "UV Direct Photolysis of N-Nitrosodimethylamine (NDMA): Kinetic and Product Study, Helve. Chim. Acta, 85(5), 1416-1426(2002) https://doi.org/10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I
  9. Florence, B. M, Edith, P. C, Andre, M. B, Esther, O, "Photocatalytic degradation of 2,4-dihydroxybenzoic acid in water: effiency optimization and mechanistic vestigations". J. Photochem. Photobiol. A; Chemistry 108, 65-71(1997). https://doi.org/10.1016/S1010-6030(96)04501-7
  10. 조일형, 이내현, 장순웅, 안상우, 윤영한, 조경덕," 실험계획법 중 Box-Behnken(박스-벤켄)법을 이용한 반응성 염료의 광촉매 산화조건 특성 해석 및 최적화,"대한환경공학회지,28(9), 917-925(2006).
  11. 조일형, 이내현, 장순웅, 안상우, 윤영한, 조경덕," 화학적 응집 공정에서 중심합성설계법을 이용한 축산폐수의 COD 제거특성 평가 및 최적화 연구,"한국물환경학회지, 23(1),111-121(2007).
  12. 조일형, 장순웅, 이시진," Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립,"대한환경공학회지, 30(7), 1-10(2008).
  13. 유승호, 조일형, 장순웅, 이시진, 천석영, 김한래," 전자빔 공정에서 실험계획법을 이용한 살균제 Benomyl의 제거특성및 독성평가,"대한환경공학회지, 30(9), 955-960(2008).