Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment

정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 빈재훈 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2009.12.17
  • Accepted : 2010.01.27
  • Published : 2010.03.31

Abstract

The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and has highly removal efficiency. The key issue to operate peroxone process is developing the method to achieve high process effectiveness when scavengers that inhibit generation of OH radicals or consume OH radicals are co-existing in the process. Also many studies, to minimize inorganic oxidative by-products such as bromate and to reduce disinfection by-products after chlorination behind peroxone process, are needed. And we should consider the excess residual hydrogen peroxide in the water. On-line instruments and control strategies need to be developed to ensure effective and robust operation under conditions of varying load. If problems above mentioned are solved, peroxone process will be applied diversely for water treatment.

Peroxone 공정은 정수처리 공정에서 기존의 염소와 오존 공정들의 여러 가지 한계점들을 극복할 수 있는 공정이다. 과산화수소와 오존에 의해 생성되는 OH 라디칼은 다양한 유기성 오염물질들에 대해 빠른 산화분해 및 높은 제거효율을 나타낸다. Peroxone 공정을 운영하는데 있어 주요 과제는 OH 라디칼 생성을 저해시키는 또는 생성된 OH 라디칼을 소모시키는 scavenger들과 공존할 때 peroxone 공정의 효율을 높일 수 있는 방안을 강구하는 것이다. Bromate와 같은 무기성 산화 부산물의 생성을 최소화할 수 있는 방안과 peroxone 공정 처리 후 염소 소독시 생성되는 염소 소독부산물들의 생성을 보다 저감할 수 있는 방안에 대해서도 많은 연구가 필요하다. 또한, 수중에 잔류하는 과산화수소에 대한 문제이다. 잔류 과산화수소를 on-line으로 측정할 수 있는 정밀한 측정장비의 개발 및 보급이 우선되어야 peroxone 공정의 운영에 있어서 안전성이 확보될 수 있다. 이러한 과제들이 해결이 된다면 peroxone 공정은 보다 다양한 목적으로 정수처리에 효율적으로 적용될 수 있을 것이다.

Keywords

References

  1. Dodd, M C. and Huang, C. H., "Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechani는 and pathways," Environ. Sci. Technol., 38, 5607-5615(2004). https://doi.org/10.1021/es035225z
  2. 손희종, 최영익, 배상대, 정철우, "오존과 활성탄 공정에서의 1,4-dioxane 제거 특성," 대한환경공학회지, 28(12), 1280-1286(2006).
  3. Veriansyah, B. and Kim, J. D., "Supercritical water oxidation for the destruction of toxic organic wastewaters: a review," J. Environ. Sci., 19, 513-522(2007). https://doi.org/10.1016/S1001-0742(07)60086-2
  4. des Mes, T, Z, D., Kujawa-Roeleveld, K., Zeeman, G., and Lettinga, G., "Anaerobic biodegradation of estrogens-hard to digest," Water Sci. Technol., 57(8), 1177-1182. https://doi.org/10.2166/wst.2008.102
  5. Lin, A. Y. C., Yu, T. H., and Lin, C. F., "Pharmaceutical contamination in residual, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan," Chemosphere, 74, 131-141(2008). https://doi.org/10.1016/j.chemosphere.2008.08.027
  6. Balest, L., Mascolo, G., Di laconi, C., and Lopez, A., "Removal of endocrine disruptor compounds from municipal wastewater by an innovative biological technology," Water Sci. Technol., 58(4), 953-956. https://doi.org/10.2166/wst.2008.711
  7. Bandala, E. R., Pelaez, M. A., Garcia-Lopez, J., Salgado, M. J., and Moeller, G., "Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes," Chem. Eng. Proc., 47, 169-176(2008). https://doi.org/10.1016/j.cep.2007.02.010
  8. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M., and Schroder, H. Fr., "Elucidation of the behavior of tannery wastewater under advanced oxidation conditions," Chemosphere, 56, 411-423 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.012
  9. Petrovic, M., Gonzalez, S., and Barcelo, D., "Analysis and removal of emerging contaminants in wastewater and drinking water," Trends Anal. Chem., 22(10), 685-696(2003). https://doi.org/10.1016/S0165-9936(03)01105-1
  10. Matosic, M., Terzic, S., Jakopovic, H. K., Mijatovic, I., and Ahel, M., "Treatment of a landfill leachate containing compounds of pharmaceutical origin," Water Sci. Technol., 58(3), 597-602(2008). https://doi.org/10.2166/wst.2008.700
  11. Zapata, A., Velegraki, T., Sanchez-Perez, J. A., Mantzavinos, D., Maldonado, M. I., and Malato, S., "Soalr photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability," Appl. Catal. B: Environ., 88, 448-454(2009). https://doi.org/10.1016/j.apcatb.2008.10.024
  12. Krause, H., Schweiger, B., Schuhmacher, J., Scholl, S., and Steinfeld, "Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid and iopromide by corona discharge over water," Chemosphere, 75, 163-168(2009). https://doi.org/10.1016/j.chemosphere.2008.12.020
  13. Klavarioti, M., Mantzavinos, D., and Kassinos, D., "Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes," Environ. Int., 35, 402-417(2009). https://doi.org/10.1016/j.envint.2008.07.009
  14. Esplugas, S., Bila, D. M., Krause, L. G. T., and Dezotti, M., "Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents," J. Hazard. Mater., 149, 631-642(2007). https://doi.org/10.1016/j.jhazmat.2007.07.073
  15. 손희종, 최영익, 배상대, 정철우, "오존과 활성탄 공정에서 1,4-dioxane 제거 특성," 대한환경공학회지, 28(12), 1280-1286(2006).
  16. Staehelin, J. and Hoigne, J., "Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide," Environ. Sci. Technol., 16, 676-681(1982). https://doi.org/10.1021/es00104a009
  17. Nakayama, S., Esaki, K., Namba, K., Taniguchi, N., and Tabata, N., "Improved ozonation in aqueous systems," Ozone Sci. Eng., 1, 119(1979). https://doi.org/10.1080/01919517908550839
  18. Glaze, W. H., Kang, J. W., and Chapin, D. H., "The chemistry of water treatment processes involving ozone. hydrogen peroxide and ultraviolet radiation," Ozone Sci. Eng., 9(4), 335-352(1987). https://doi.org/10.1080/01919518708552148
  19. Brunet, R., Bourbigot, M. M., and Dore, M., "Oxidation of organic compounds through the combination ozone-hydrogen peroxide," Ozone Sci. Eng., 6, 163(1984). https://doi.org/10.1080/01919518408551019
  20. Duguet, J. P., Brodard, E., Dussert, B., and Mallevialle, J., "Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide," Ozone Sci. Eng., 7, 241-258(1985). https://doi.org/10.1080/01919518508552366
  21. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L., and Aieta, E. M., "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms," J. AWWA, 82(4), 181-191(1990). https://doi.org/10.1002/j.1551-8833.1990.tb06950.x
  22. Roche, P., Volk, C., Carbonnier, F., and Paillard, H., "Water oxidation by ozone/hydrogen peroxide using the 'Ozotest' or 'Peroxotest' methods," Ozone Sci. Eng., 16(2) 135-155(1994). https://doi.org/10.1080/01919519408552418
  23. Glaze, W. H. and Kang, J. W., "Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies," J. AWWA, 80(5), 57-63(1988).
  24. Aieta, E. M., Reagan, K. M., Lang, J. S., McReynolds, L., Kang, J. W., and Glaze, W. H., "Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: pilot- scale evaluations," J. AWWA, 80(5), 64-72(1988). https://doi.org/10.1002/j.1551-8833.1988.tb03039.x
  25. Marhaba, T. F. and Bengraine, K., "Review of strategies for minimizing bromate formation resulting from drinking water ozonation," Clean Technol. Environ. Policy, 5, 101-112(2003). https://doi.org/10.1007/s10098-002-0177-4
  26. Sein, M. M., Golloch, A., Schmidt, T. C., and von Sonntag, C., "No marked kinetic isotope effect in the peroxone $(H_{2}O_{2}/D_{2}O_{2}+O_{3})$ reaction: mechanistic consequences," Chem. Phys., 8, 2065-2067(2007). https://doi.org/10.1002/cphc.200700493
  27. Wojnarovits, L. and Takacs, E., "Irradiation treatment of azo dye containing wastewater: an overview," Radiat. Phys. Chem., 77, 225-244(2008). https://doi.org/10.1016/j.radphyschem.2007.05.003
  28. Glaze, W. H. and Kang, J. W., "Advanced oxidation processes: description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor," Ind. Eng. Chem. Res., 28, 1573-1580(1989). https://doi.org/10.1021/ie00095a001
  29. von Sonntag, C., "Advanced oxidation processes: mechanistic aspects," Water Sci. Technol., 58(5), 1015-1021(2008). https://doi.org/10.2166/wst.2008.467
  30. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution," J. Phys. Ref. Data, 17(2), 513-851(1988). https://doi.org/10.1063/1.555805
  31. Acero, J. L. and von Gunten, U., "Characterization of oxidation processes: ozonation and the AOP $O_{3}$/$H_{2}O_{2}$," J. AWWA, 93(10), 90-100(2001).
  32. Elovitz, M. and von Gunten, U., "Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept," Ozone Sci. Eng., 21, 239-260(1999). https://doi.org/10.1080/01919519908547239
  33. Westerhoff, P., Song, R., Amy, G., and Minear, R., "Application of ozone decomposition models," Ozone Sci. Eng., 19(1), 55-73(1997). https://doi.org/10.1080/01919519708547318
  34. Elovitz, M., von Gunten, U., and Kaiser, H., "Hydroxyl radical/ ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity and DOM properties," Ozone Sci. Eng., 22, 123-150(2000). https://doi.org/10.1080/01919510008547216
  35. US EPA, Alternative Disinfectants and Oxidants, 1999.
  36. Forni, L., Bahnemann, D., and Hart, E. J., "Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution," J. Phys. Chem., 86, 255-259(1982). https://doi.org/10.1021/j100391a025
  37. Ferguson, D. W., Gramith, J. T., and McGuire, M. J., "Applying ozone for organics control and disinfection: a utility perspective," J. AWWA, 83(5), 32-39(1991). https://doi.org/10.1002/j.1551-8833.1991.tb07144.x
  38. Huck, P. M., Anderson, W. B., Lang, C. L., Anderson, W. A., Fraser, J. C., Jasim, S. Y., Andrew, S. A., and Pereira, G., "Ozone vs. peroxone for geosmin and 2-methylisoborneol control: laboratory, pilot and modeling studies," Proceedings of AWWA Annual Conference, Anaheim, CA, (1995).
  39. 이화자, 손희종, 노재순, 이상원, 지기원, 유평종, 강임석, "오존과 과산화수소를 이용한 geosmin과 2-MIB 산화: 동력학적 평가," 대한환경공학회지, 29(7), 826-832(2007).
  40. Masten, S. J. and Hoigne, J., "Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbons in water," Ozone Sci. Eng., 14(3), 197-214(1992). https://doi.org/10.1080/01919519208552475
  41. Balcioglu, I. A. and Otker, M., "Treatment of pharmaceutical wastewater containing antibiotics by $O_{3}$ and $O_{3}/H_{2}O_{2}$ processes," Chemosphere, 50, 85-95(2003). https://doi.org/10.1016/S0045-6535(02)00534-9
  42. Arslan-Alaton, I. and Dogruel, S., "Pre-treatment of penicillin formulatopn effluent by advanced oxidation processes," J. Hazard. Mater., 112, 105-113(2004). https://doi.org/10.1016/j.jhazmat.2004.04.009
  43. 이화자, 손희종, 노재순, 이상원, 지기원, 유평종, 강임석, "오존과 과산화수소를 이용한 이취미 물질 산화 제거," 대한환경공학회지, 28(12), 1323-1330(2006).
  44. Suh, J. H. and Mohseni, M., "A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide," Water Res., 38, 2596-2604(2004). https://doi.org/10.1016/j.watres.2004.03.002
  45. Wolfe, R. L., Stewart, M. H., Liang, S., and McGuire, M. J., "Disinfection of model indicator organisms in a drinking water pilot plant by using peroxone," Appl. Environ. Microbiol., 55(9), 2230-2241(1989).
  46. Wolfe, R. L., Stewart, M. H., Scott, K. N., and McGuire, M. J., "Inactivation of Giardia muris and indicator organisms seeded in surface water supplies by peroxone and ozone," Environ. Sci. Technol., 23, 744-745(1989). https://doi.org/10.1021/es00064a015
  47. Scott, K. N., Wolfe, R. L., Stewart, M. H., "Pilot-plant-scale ozone and peroxone disinfection of Giardia muris seeded into surface water supplies," Ozone Sci. Eng., 14(1), 71-90(1992). https://doi.org/10.1080/01919519208552318
  48. Legrini, O., Oliveros, E., and Braun, A. M., "Photochemical processes for water-treatment," Chem. Rev., 93(2), 671-698(1993). https://doi.org/10.1021/cr00018a003
  49. Peyton, G. R. and Glaze, W. H., "Mechanism of photocatalytic ozonation," In Photochemistry of Environmental Aquatic Systems, ACS Symposium Series 327, Zika, R. G. and Cooper, W. J.,(Eds.), American Chemical Society, Washington DC, pp. 76-88, (1986).
  50. Acar, E. and Ozbelge, T., "Oxidation of Acid Red-151 aqueous solutions by the peroxone process and its kinetic evaluation," Ozone Sci. Eng., 28, 155-164(2006). https://doi.org/10.1080/01919510600660258
  51. Duguet, J. P., Anselme, C., Mazounie, P., and Mallevialle, J., "Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groung water," Ozone Sci. Eng., 12(3), 281-294(1990). https://doi.org/10.1080/01919519008552197
  52. 손희종, 유수전, 황영도, 노재순, 유평종, "산화공정에서의 diclofenac, ibuprofen 및 naproxen의 제거특성 평가," 대한환경공학회지, 31(10), 831-838(2009).
  53. Glaze, W. H., "Reaction products of ozone: a review," Environ. Health Perspec., 69, 151-157(1986). https://doi.org/10.1289/ehp.8669151
  54. Carlson, K. H. and Amy, G., "BOM removal during biofiltration," J. AWWA, 90(12), 42-52(1998). https://doi.org/10.1002/j.1551-8833.1998.tb08550.x
  55. von Gunten, U. and Hoigne, J., "Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions," Environ. Sci. Technol., 28(7), 1234-1242(1994). https://doi.org/10.1021/es00056a009
  56. Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., and Aieta, E. M., "The occurrence of disinfection by-products in US drinking water," J. AWWA, 81(8), 41-53(1989). https://doi.org/10.1002/j.1551-8833.1989.tb03258.x
  57. Song, R., Westerhoff, P., Minear, R., and Amy, G., "Bromate minimization during ozonation," J. AWWA, 89(6), 69-78 (1997). https://doi.org/10.1002/j.1551-8833.1997.tb08243.x
  58. Buffle, M., Galli, S., and von Gunten, U., "Enhanced bromate control during ozonation: the chlorine-ammonia process," Environ. Sci. Technol., 38(19), 5187-5195(2004). https://doi.org/10.1021/es0352146
  59. Amy, G. L., Westerhoff, P., Minear, R. A., and Song, R., Formation and Control of Brominated Ozone By-Products, AWWA, Denver, Colo., (1997).
  60. Siddiqui, M. S. and Amy, G. L., "Factors affecting DBP formation during ozone-bromide reaction," J. AWWA, 85, 63-72(1993).
  61. Hofmann, R. and Andrews, R. C., "Impact of $H_{2}O_{2}$ and (bi)carbonate alkalinity on ammonia's inhibition of bromate formation," Water Res., 40, 3343-3348(2006). https://doi.org/10.1016/j.watres.2006.07.032
  62. Shukairy, H. M., Miltner, R. J., and Summers, R., "Bromide's effect on DBP formation, speciation and control: part 1, ozonation," J. AWWA, 86, 72-87(1994). https://doi.org/10.1002/j.1551-8833.1994.tb06211.x
  63. AWWARF, Pilot-scale Evaluation of Ozone and Peroxone, AWWARF and AWWA, (1991).
  64. Mosteo, R., Miguel, N., Martin-Muniesa, S., Ormad, M. P., and Ovelleiro, J. L., "Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process," J. Hazard. Mater., 172, 661-666(2009). https://doi.org/10.1016/j.jhazmat.2009.07.048
  65. Irabelli, A., Jasim, S., and Biswas, N., "Pilot-scale evaluation of ozone vs. peroxone for trihalomethane formation," Ozone Sci. Eng., 30, 356-366(2008). https://doi.org/10.1080/01919510802333092
  66. Ledakowicz, S. and Gonera, M., "Optimization of oxidants dose for combined chemical and biological treatment of textile wastewater," Water Res., 33(11), 2511-2516(1999). https://doi.org/10.1016/S0043-1354(98)00494-1
  67. Krasner, S., Glaze, W., Weinberg, H., Daniel, P., and Najm, I., "Formation and control of bromate during ozonation of waters containing bromide," J. AWWA, 85(1), 73-81(1993).
  68. Lafi, W. K., Shannak, B., Al-Shannag, M., Al-Anber, Z., and Al-Hasan, M., "Treatment of olive mill wastewater by combined advanced oxidation and biodegradation," Sep. Purif. Technol., 70, 141-146(2009). https://doi.org/10.1016/j.seppur.2009.09.008
  69. Brandhuber, P., "Detecting hydrogen peroxide concentration in advanced oxidation treatment processes," Waterscapes, 17(1), 5-6(2006).
  70. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st edition, Eaton, A. D., Clesceri, L. S., Rice, E. W., and Greenberg, A. E., (Eds.), AWWA, Baltimore, Maryland, (2005).
  71. Gordon, G., Cooper, W. J., Rice, R. G., and Pacey, G. E., Disinfectant Residual Measurement Methods, 2nd edition, AWWARF and AWWA, Denver, Colorado, (1992).
  72. Masschelein, W., Denis, M., Ledent, R., "Spectrophotometric determination of residual hydrogen peroxide," Water Sewage Works, 69-72(1977).
  73. Dukes, E. K. and Hydier, M. L., "Determination of peroxide by automated chemistry," Anal. Chem., 36, 1689-1690(1964). https://doi.org/10.1021/ac60214a071
  74. Modrzejewska, B., Guwy, A. J., Dinsdale, R., and Hawkes, D. L., "Measurement of hydrogen peroxide in an advanced oxidation process using an automated biosensor," Water Res., 41, 260 -268(2007). https://doi.org/10.1016/j.watres.2006.07.034
  75. Pashkova, A., Svajda, K., Black, G., and Dittmeyer, R., "Automated system for spectrophotometric detection of liquid phase hydrogen peroxide for concentrations up to 5% w/w," Rev.Sci. Instru., 80, 1-5(2009).
  76. Zwiener, C. and Frimmel, F. H., "Oxidative treatment of pharmaceuticals in water," Water Res., 34, 1881-1885(2000). https://doi.org/10.1016/S0043-1354(99)00338-3
  77. Safarzadeh-Amiri, A., "$O_{3}/H_{2}O_{2}$ treatment of methyl-tert-butyl ether (MTBE) in contaminated waters," Water Res., 35(15), 3706-3714(2001). https://doi.org/10.1016/S0043-1354(01)00090-2
  78. Huber, M. M., Canonica, S., Park, G. Y., and von Gunten, U., "Oxidation of pharmaceuticals during ozonation and advanced oxidation processes," Environ. Sci. Technol., 37, 1016-1024(2003). https://doi.org/10.1021/es025896h
  79. Schroder, H. Fr. and Meesters, R. J. W., "Stability of fluorinated surfactants in advanced oxidation processes-a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography- multiple stage mass spectrometry," J. Chromatogr., A, 1082, 110-119(2005). https://doi.org/10.1016/j.chroma.2005.02.070
  80. Alsheyab, M. A. and Munoz, A. H., "Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide $(H_{2}O_{2}/O_{3})$," Desalination, 194, 121-126(2006). https://doi.org/10.1016/j.desal.2005.10.028
  81. Rivera-Utrilla, J., Mendez-Diaz, J., Sanchez-Polo, M., Ferro-Garcia, M. A., and Bautista-Toledo, I., "Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on $O_{3}$ and $O_{3}/H_{2}O_{2}$," Water Res., 40, 1717-1725(2006). https://doi.org/10.1016/j.watres.2006.02.015
  82. Kusic, H., Koprivanac, N., and Bozic, A. L., "Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies," Chem Eng. J., 123, 127-137(2006). https://doi.org/10.1016/j.cej.2006.07.011
  83. Yu, Y., Ma, J., and Hou, Y., "Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process," J. Environ. Sci., 18(6), 1043-1049(2006). https://doi.org/10.1016/S1001-0742(06)60036-3
  84. Lee, C., Yoon, J., and von Gunten, U., "Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide," Water Res., 41, 581-590(2007). https://doi.org/10.1016/j.watres.2006.10.033
  85. Ji, M. S., Xue, Y. L., Zhong, L. C., Xiao, H. G., Xue, Z., and Zhen, Z. X., "Degradation of macromolecular tannic acid by $O_{3}/H_{2}O_{2}$," Water Sci. Technol., 57(12), 2043-2050(2008). https://doi.org/10.2166/wst.2008.609
  86. Kim, I. H., Tanaka, H., Iwasaki, T., Takubo, T., Morioka, T., and Kato, Y., "Classification of the degradation of 30 pharma ceuticals in water with ozone, UV and $H_{2}O_{2}$," Water Sci. Technol., 57(2), 195-200(2008). https://doi.org/10.2166/wst.2008.808
  87. Chen, W. R., Wu, C., Elovitz, M. S., Linden, K. G., and Suffet, I. H., "Reaction of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals," Water Res., 42, 137-144(2008). https://doi.org/10.1016/j.watres.2007.07.037
  88. Maniero, M. G., Bila, D. M., and Dezotti, M., "Degradation and estrogenic activity removal of $17\beta$-estradiol and $17\alpha$-ethinylestradiol by ozonation and $O_{3}/H_{2}O_{2}$," Sci. Total Environ., 407, 105-115(2008). https://doi.org/10.1016/j.scitotenv.2008.08.011
  89. De Witte, B., Dewulf, J., Demeestere, K., Van Langenhove, H., "Ozonation and advanced oxidation by the peroxone process of ciprofloxacin," J. Hazard. Mater., 161, 701-708(2009). https://doi.org/10.1016/j.jhazmat.2008.04.021
  90. Popiel, S., Nalepa, T., Dzierzak, D., Stankiewicz, R., and Witkiewicz, Z., "Rate of dibuthylsulfide decomposition by ozonation and $O_{3}/H_{2}O_{2}$ advanced oxidation process," J. Hazard. Mater., 164, 1364-1371(2009). https://doi.org/10.1016/j.jhazmat.2008.09.049
  91. Li, K., Hokanson, D. R., Crittenden, J. C., Trussell, R. R., and Minakata, D., "Evaluating $UV/H_{2}O_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources," Water Res., 42, 5045-5053(2008). https://doi.org/10.1016/j.watres.2008.09.017