Charaterization of Biomass Production and Wastewater Treatability by High-Lipid Algal Species under Municial Wastewater Condition

실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석

  • Lee, Jang-Ho (School of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Joon-Hong (School of Civil and Environmental Engineering, Yonsei University)
  • 이장호 (연세대학교 사회환경시스템공학부) ;
  • 박준홍 (연세대학교 사회환경시스템공학부)
  • Received : 2009.10.09
  • Accepted : 2010.04.14
  • Published : 2010.04.30

Abstract

Wastewater treatment using algal communities and biodiesel production from wastewater-cultivated algal biomass is a promising green growth technology. In literature, there are many studies providing information on algal species producing high content of lipid. However, very little is known about adaptability and wastewater treatability of such high-lipid algal species. In this study, we attempted to characterize algal biomass production and wastewater treatability of high-lipid algal species under municipal wastewater condition. For this, four known high-lipid algal strains including Chlorella vulgaris AG 10032, Ankistrodesmus gracilis SAG 278-2, Scenedesmus quadricauda, and Botryococcus braunii UTEX 572 were individually inoculated into municipal wastewater where its indigenuous algal populations were removed prior to the inoculation, and the algae-inoculated wastewater was incubated in the presence of light source (80${\mu}E$) for 9 days in laboratory batch reactors. During the incubations, algal biomass production (dry weight) and the removals of dissolved organics (COD), nitrogen and phosphorous were measured in laboratory batch reactors. According to algal growth results, C. vulgaris, A. gracilis and S. quadricauda exhibited faster growth than indigenuous wastewater algal populations while B. braunii did not. The wastewater-growing strains exhibited efficient removals of total-N, ${NH_4}^+$-N, Total-P and ${PO_4}^{3-}$-P which satisfy the Korea water quality standards for effluent from municipal wastewater treatment plants. A. gracilis and S. quadricauda exhibited efficient and stable treatability of COD but C. vulgaris showed unstable treatability. Taken together with the results, A. gracilis and S. quadricauda were found to be suitable species for biomass production and wastewater treatment under municipal wastewater condition.

하수나 폐수를 이용해서 조류를 배양하고 이를 통해서 획득된 조류 생체로부터 바이오디젤을 생산한다는 것은 친생태적이면서 신재생에너지 생산이라는 점에서 최근 각광받는 녹색성장기술이다. 바이오디젤 생산에 필요한 지질의 함량이 높은 조류 종에 대한 연구가 최적 인공배양액 조건에서 연구된 사례들이 있다. 하지만 실제 하수의 조건에서 고지질 함량 조류의 생체생성과 하수처리능에 대한 정보 제공이 미흡한 것이 현황이다. 본 연구에서는 바이오디젤 전구물질인 지질함량이 높다고 알려진 조류 종들을 선별해서 국내 하수조건에서 생체생성능과 하수처리능을 분석하였다. 이를 위해서 실제 하수에서 토착조류를 제거한 후 지질함량이 높다고 알려진 조류 4종(Chlorella vulgaris AG10032, Ankistrodesmus gracilis SAG278-2, Scenedesmus quadricauda, Botryococcus braunii UTEX 572)을 각각 하수에 식종한 후에 조류의 성장률과 유기물, 질소 및 인의 제거를 실험실 규모의 회분식반응조에서 분석하였다. 일정한 광반응 조건 (80 ${\mu}E$, 24시간)에서 9일간 배양하면서 시간 별로 조류의 건조 생체량과 COD, 질소 및 인을 각기 측정하였다. 그 결과 C. vulgaris, A. gracilis와 S.quadricauda는 하수의 토착조류 보다 하수에서 더 우월하게 성장하는 것을 알 수 있었다. 반면 B. braunii는 하수조건에서 성장을 할 수 없는 것으로 나타났다. 하수에서 배양가능한 조류들에 의한 질소 (Total-N, ${NH_4}^+$-N)와 인(Total-P, ${PO_4}^{3-}$-P)의 제거능이 우수하였고, 하수처리 방류수질 기준을 만족하였다. 하수에서 배양가능한 조류들에 의한 용존 COD의 제거 분석 결과, A. gracilis와 S. quadricauda는 효과적인 COD제거를 지속하였지만, C. vulgaris는 초기의 COD 제거가 지속되지 않는 불안정성을 보였다. 이러한 결과들을 종합적으로 고려해서 본 연구에서는 A. gracilis와 S. quadricauda를 실제 하수에 적응성과 처리능이 우수한 조류자원으로 선정하였다.

Keywords

References

  1. Munoz, R. and Guieysse, B., "Algal-bacterial processes for the treatment of hazardous contaminants: A review," Water Res, 40(15), 2799-2815(2006). https://doi.org/10.1016/j.watres.2006.06.011
  2. Chisti, Y., "Biodiesel from microalgae," Biotechnol. Adv, 25(3), 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  3. 김한욱, 이우성, 이철균, "미세조류를 이용한 질소제거 장치의 크기," 한국생물공학회지, 19(3), 236-240(2004).
  4. 노성희, 김선일, "폐석회를 이용한 폐수 중 인 제거 특성," 응용화학, 6(2), 735-738(2002).
  5. Bitton, G., Wastewater Microbiology, Willey-Liss, Inc., New York, pp. 60(1994).
  6. Roques, H., Nugroho-Jeudy, L. and Lebugle, A., "Phosphorus removal from wastewater by half-burned dolomite," Water. Res., 25(8), 959-965(1991). https://doi.org/10.1016/0043-1354(91)90144-F
  7. Laliberte, G., Proulx, D., Pauw, N. and Nouee, J. L., "Algal technology in wastewater treatment," Ergenisse Limnol, 42, 283-302(1994).
  8. McGriff, E. C. and McKinney, R. E., "The removal of nutrients and organics by activated algae," Water Res, 6(10), 1155-1164(1972). https://doi.org/10.1016/0043-1354(72)90015-2
  9. Nurdogan, Y. and Oswald, W. J., "Enhanced nutrient removal in high-rate ponds," Water Sci Technol, 31(12), 33-43(1995). https://doi.org/10.1016/0273-1223(95)00490-E
  10. Oswald, W. J., "My sixty years in applied algology," J. Appl. Phycol., 15(2-3), 99-106(2003). https://doi.org/10.1023/A:1023871903434
  11. Ben-Amotz, A. and Tornabene, T. G., "Chemical profile of selected species of macroalgae with emphasis on lipids," J. Phycol., 21(1), 72-81(1985).
  12. Banerjee, A., Sharma, R., Chisti, Y. and Banerjee, U. C., "Botryococcus braunii: A renewable source of hydrocarbons and other chemicals," Crit. Rev. Biotechnol., 22(33), 245-279(2002). https://doi.org/10.1080/07388550290789513
  13. Metzger, P. and Largeau, C., "Botryococcus braunii: A rich source for hydrocarbons and related ether lipids," Appl. Microbiol. Biotechnol., 66(5), 486-496(2005). https://doi.org/10.1007/s00253-004-1779-z
  14. Xu, H., Miao, X. L. and Wu, Q., "High quality biodiesel production from a microalga chlorella protothecoides by heterotrophic growth in fermenters," J. Biotechnol., 126(4), 499-507(2006). https://doi.org/10.1016/j.jbiotec.2006.05.002
  15. Gutzeit, G., Lorch, D., Weber, A., Engels, M. and Neis, U., "Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment," Water Sci. Technol., 52(12), 9-18(2005).
  16. Pinto, G., Pollio, A., Previtera, L. and Temussi, F., "Biodegradation of phenols by microalgae," Biotechnol. Lett., 24(24), 2047-2051(2002) https://doi.org/10.1023/A:1021367304315
  17. Macedo, C. F. and Pinto-Coelho, R. M., "Nutritional status response of Daphnia laevis and Moina micrura from a tropical rhnirvoir to differhnt algal aphts: Scenedhnmus quadricauda and Ank rerodenmus gracilis," Braz. J. Biol., 61(4), 555-562(2001). https://doi.org/10.1590/S1519-69842001000400005
  18. Metzger, P. and Largeau, C., "Botryococcus braunii: a rich source for hydrocarbons and related ether lipids," Appl. Microbial. Biotechnol, 66(5), 486-496(2005). https://doi.org/10.1007/s00253-004-1779-z
  19. Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., Standard Methods for the Examination of Water and Wastewater, 20th ed., United Book Press, Inc., Baltimore, pp. 2-57-2-58(1998).
  20. Reasoner, D. J. and Geldreich, E. E., "A new medium for the enumeration and subculture of bacteria from potable water," Appl. Environ. Microbiol., 49(1), 1-7(1985).
  21. Han, I., Congeevaram, S. and Park, J., "Impoved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion," Water Sci. Technol, 59(2), 267-271(2009). https://doi.org/10.2166/wst.2009.856
  22. Lau, P. S., Tam, N. F. Y. and Wong, Y. S., "Effect of algal density on nutrient removal from primary settled wastewater," Environ. Pollut, 89(1), 59-66(1995). https://doi.org/10.1016/0269-7491(94)00044-E
  23. Mallick, N., "Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review," Biomteritals, 15(4), 377-390(2002).
  24. Tenaud, M., Ohmori, M., and Miyachi, S., "Inorganic carbon and acetate assimilation in Botryococcus braunii(Chlorophyta)," J. Phycol., 25(4), 662-667(2004).
  25. Largeau, C., Casadevalla, E. and Berkaloff, C., "The biosynthesis of long-chain hydrocarbons in the green alga Botryococcus braunii," Phytochemistry, 19(6), 1081-1085(1980). https://doi.org/10.1016/0031-9422(80)83060-3
  26. Havskum, H., Thingstad, T. F., Scharek, R., Peters, F., Berdalet, E., Sala, M. M., Alcaraz, M., Bangsholt, J. C., Zwifel, U. L., Hagstrom, A., Perez, M. and Dotan, J. R., "Silicate and labile DOC interfere in structuring the microbial food web via algal-bacterial competition for minetal nutrients: Results of a mesocosm experiment, Limnol. Oceanogr., 48(1), 129-140 (2003). https://doi.org/10.4319/lo.2003.48.1.0129
  27. Daranas, A. H., Norte, M. and Fernandez, J. J., "Toxic marine microalgae," Toxicon, 39(8), 1101-1132(2001). https://doi.org/10.1016/S0041-0101(00)00255-5
  28. Berges, J. A. and Falkowski, P. G., "Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen of light limitation," Limnol. Oceanogr., 43(1), 129-135(1998). https://doi.org/10.4319/lo.1998.43.1.0129
  29. 환경부, 수질 및 수생태계 보전에 관한 법률 시행규칙(2007).
  30. Fuhrman, J. A., Horrigan, S. G. and Capone, D. G., "Use of 13N as tracer for bacterial and algal uptake of ammonium from seawater," Mar. Ecol. Prog., 45(3), 271-278(1988). https://doi.org/10.3354/meps045271
  31. Rhee, G.-Y., "Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and mitrate uptake," Limnol. Oceanogr., 23(1), 10-25(1978). https://doi.org/10.4319/lo.1978.23.1.0010
  32. Tchobanoglous, G., Burton, F. L. and Stensel, H. D., Wastewater Engineering, 4th ed., McGraw-Hill, New York, pp. 623-629 (2004).