인공습지에서 오염물질 제거기작 및 국내외 연구동향

Removal Mechanisms for Water Pollutant in Constructed Wetlands: Review Paper

  • 고대현 (환경부 기획조정실) ;
  • 정윤철 (한국과학기술연구원 연구조정부) ;
  • 서성철 (환경관리공단 수생태시설치)
  • Ko, Dae-Hyun (Global Environmental Division, Ministry of Environment) ;
  • Chung, Yun-Chul (Research Coordination Division, Korea Institute of Science and Technology) ;
  • Seo, Seong-Cheol (Aquatic Ecosystem Conservation Department, Environmental Management Corporation)
  • 투고 : 2009.06.11
  • 심사 : 2010.04.15
  • 발행 : 2010.04.30

초록

최근 국내에서 인공습지는 하 폐수처리장 방류수의 후처리, 비점오염원 관리, 생태하천 복원 등 다양한 용도로 적용되고 있다. 그러나 인공습지가 설치되는 지역의 기후, 유입수의 특성, 지역적 특성 등에 따라 매우 영향을 많이 받기 때문에 인공습지 내에서의 오염물질의 제거기작은 확실하게 이해되고 있지는 않다. 그러므로, 이 연구에서는 인공습지 내에서 질소, 인을 중심으로 한 오염물질의 제거기작을 중심으로 살펴보았다. 그 결과, 질소 제거의 주된 기작은 인공습지 내의 근권(rhizosphere)에서의 질산화/탈질에 의한 것으로 판단되며, 인 제거의 주된 기 작은 인공습지내 여재 등의 기층(substrate)에서의 흡착에 의한 것으로 판단된다. 그러나, 인공습지내의 인의 거동은 산화/환원 전위(ORP), 흡착/탈착, 미생물의 작용 등에 따라 다양한 형태를 가질 수 있는 것으로 판단된다.

In these days, constructed wetlands are applied in Korea for various purposes ; post-treatment of effluent in wastewater treatment, management of stormwater and restoration of aquatic ecosystems. However, the removal mechanisms for water pollutant in constructed wetlands are not clearly understood because they are affected by climate, influent characteristics and local constraints. Therefore, this paper is focused on the process that the pollutant, especially nitrogen and phosphorus, of the wetland is removed by. In this study, the main nitrogen removal is performed by nitrification/denitrification mechanism in the rhizosphere of constructed wetlands. And the majority of the phosphorus is removed by adsorption on the substrate of wetland. However the fate of phosphorus in wetlands can be diverse depending on the Oxidation Reduction Potential(ORP), adsorption/desorption, precipitation/dissolution, microbial effect, etc.

키워드

참고문헌

  1. 김응호, 하수처리시설 설치 운영 개선방안, 2001년 제2차 물관리정책토론회 발표자료, 국무총리 수질개선 기획단, (2001).
  2. Hanselman, T. A., Graetz, D. A. and Wilkie, A. C., "Manure-borne estrogens as potential environmental contaminants: a review, Environ. Sci. Technol.," 37(24), 5471-5478(2003). https://doi.org/10.1021/es034410+
  3. Nosengo, N. "Fertilized to death, Nature," 425, 894-895(2003). https://doi.org/10.1038/425894a
  4. 김민희, 윤춘경, 인공습지 실험시설의 5년간 결과 및 고찰, 한국농공학회 학술발표회, 2000년 10월 14일, 649-654(2000).
  5. Mihelcic, J. R., Crittenden, J. C., Small, M. J., Shonnard, D. R., Hokanson, D. R., Zhang, Q., Chen, H., Sorby, S. A., James, V. U., Sutherland, J. W. and Schnoor, J. L., "Sustainability science and engineering; the emergence of a new metadiscipline," Environ. Sci. Technol., 37(23), 5314-5324(2003). https://doi.org/10.1021/es034605h
  6. 안태석, 21세기를 위한 새로운 환경기술 : 생태기술(2002).
  7. Werner, C., Mang, H. P., and Schlick, J., ECOSAN - introduction of closed-loop approaches in wastewater management and sanitation a new supra-regional GTZ-project, In Proceedings of the 5th specialized conference on small water and wastewater treatment systems, Istanbul, Turkey, 24-26, September 2002, 1085-1090(2002).
  8. Cronk, J. K., "Constructed wetland to treat wastewater from dairy and swine operations; a review." Agric. Ecosystems and Environ., 58, 97-114(1996). https://doi.org/10.1016/0167-8809(96)01024-9
  9. Mitsch, W. J. and Gosselink, J. G., Wetlands, 2nd ed., John Wiley & Sons, New York(2000).
  10. U. S. EPA, America's Wetland - Our Vital Link Between Land and Water, United States Environmental Protection Agency, In http://www.epa.gov/OWOW/wetlands/vital/toc.html(2008).
  11. Ramsar Convention (2006) Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance of the Convention on Wetlands (Ramsar, Iran, 1971) Third edition, as adopted by Resolution VII.11 (COP7, 1999) and amended by Resolutions VII.13, VIII.11 and VIII.33 (COP8, 2002), and IX.1 Annexes A and B (COP9, 2005)
  12. Sundaravadivel M. and Vigneswaran S. Constructed Wetlands for wastewater Treatment, Cri. Rev. Environ. Sci. Technol., 31(4), 351-409(2001). https://doi.org/10.1080/20016491089253
  13. WERF, Research Needs for Nutrient Removal from Wastewater, Project 92-WNR-1, Water Environment Research Foundation, Alexandria, VA(1994).
  14. Crites, R. W., and Tchobanoglous, G., Small and Decentralized Wastewater Management Systems. McGraw-Hill, New York(1998).
  15. U. S. EPA, Guiding principles for constructed treatment wetlands: providing for water quality and wildlife habitat, EPA 843-B-00-003, Office of Wetlands, Oceans and Watersheds, Washington, DC(2000).
  16. Murray-Gulde, C., Heatley, J. E., Karanfil, T., Rodgers, J. H. and Myers, J. E., "Performance of a hybrid reverse osmosisconstructed wetland treatment system for brackish oil field produced water," Water Res., 37, 705-713(2003). https://doi.org/10.1016/S0043-1354(02)00353-6
  17. Mantovi, P., Marmiroli, M., Maestri, E., Tagliavini, S., Piccinini, S. and Marmiroli, N., "Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater," Biores. Technol., 88, 85-94(2003). https://doi.org/10.1016/S0960-8524(02)00291-2
  18. Gatts, E. N., Faria, R. T., Vargas, H., Lannes, L. S., Aragon, G. T. and Ovalle, A. R. C., "On the use of photothermal techniques for monitoring constructed wetlands." Rev. sci. Instrum., 71(1), 510-512(2003).
  19. WEF, Biological and Chemical Systems for Nutrient Removal, Water Environment Federation, Alexandria, VA(1998).
  20. Steinmann, C. R., Weinhart, S. and Melzer, A., "A combined system of lagoon and constructed wetland for an effective wastewater treatment," Water Res., 37, 2035-2042.
  21. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York(2001).
  22. Brix, H., "Do macrophytes play a role in constructed treatment wetlands?," Water Sci. Technol, 35(5), 11-17(1997). https://doi.org/10.1016/S0273-1223(97)00047-4
  23. Hench, K. R., Bissonnette, G. K., Sexstone, A. J., Coleman, J. G., Garbutt, K. and Skousen, J. G., "Fate of physical, chemical and microbial contaminants in domestic wastewater following treatment by small constructed wetlands," Water Res., 37(4), 921-927(2003). https://doi.org/10.1016/S0043-1354(02)00377-9
  24. Kadlec, R. H. and Knight, R. L., (1996) Treatment wetlands, Lewis Publishers, New York(1996).
  25. Manios, T., Stentiford, E. I. and Millner, P., "Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands," J. Environ. Sci. Health; Part A-Toxic/ Hazardous Substances & Environmental Engineering, A38(6), 1073-1085(2003).
  26. Watson, J. T., Reed, S. C., Kadlec, R. H., Knight, R. L. and Whitehouse, A. E., Performance expectations and loading rates for constructed wetlands, In Constructed Wetlands for Wastewater Treatment; Municipal, Industrial and Agricultural, Hammer, D. H., Ed.; Lewis Publishers, (1989).
  27. Baptista, J. D. C., Donnelly, T., Rayne, D. and Davenport, R. J., "Microbial mechanisms of carbon removal in subsurface flow wetlands," Water Sci. Technol., 48(5), 127-134(2003).
  28. Vymazal, J. and Masa, M., "Horizontal sub-surface flow constructed wetland with pulsing water level," Water Sci. Technol., 48(5), 143-148(2003).
  29. Quanrud, D. M., Karpiscak, M. M., Lansey, K. E. and Arnold, R. G., "Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert," Chemosphere, 54, 777-788(2004). https://doi.org/10.1016/j.chemosphere.2003.08.020
  30. Barber, L. B., Leenheer, J. A., Noyes, T. I. and Stiles, E. A., "Nature and transformation of dissolved organic matter in treatment wetlands," Environ. Sci. Technol., 35, 4805-4816 (2001). https://doi.org/10.1021/es010518i
  31. Bezbaruah, A. N. and Zhang, T. C., "Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal," Environ. Sci. Ttechnol., 37, 1690-1697(2003).. https://doi.org/10.1021/es020912w
  32. Brix, H., Wastewater treatment in constructed wetlands: system design, removal processes, and treatment performance, In Constructed wetlands for Water Quality Improvement, Moshiri, G. A., Ed.; Lewis Publishers(1993).
  33. Mander, U., Kuusemets, V., Lohmus, K., Mauring, T., Teiter, S. and Augustin, J., "Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland," Water Sci. Technol., 48(5), 135-142(2003).
  34. Hsieh, Y. and Coultas, C. L. Nitrogen removal from freshwater wetland: nitrification-denitrification coupling potential, In Constructed Wetlands for Wastewater Treatment; Municipal, Industrial and Agricultural, Hammer, D. H., Ed.; Lewis Publishers(1989).
  35. Bayley, M. L., Davison, L. and Headley, T. R., "Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification," Water Sci. Technol., 48(5), 175-182(2003).
  36. Tanner, C. C. and Kadlec, R. H., "Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands," Water Sci. Technol., 48(5), 191-198(2003).
  37. Gerke, S., Baker, L. and Xu, Y., "Nitrogen transformation in a wetland receiving lagoon effluent: sequential model and implications for water reuse," Water Res., 35(16), 3857-3866 (2001). https://doi.org/10.1016/S0043-1354(01)00121-X
  38. Kayser, K., Kunst, S., Fehr, G. and Voermanek, H., "Controlling a combined lagoon/reed bed system using the oxidationreduction potential (ORP), Water Sci. Technol., 48(5), 167-174(2003).
  39. Hunter, R. G., Combs, D. L. and George, D. B., "Nitrogen, phosphorus, and organic carbon removal in simulated wetland treatment systems," Arch. Environ. Contam. Toxicol., 41, 274-281(2001). https://doi.org/10.1007/s002440010249
  40. Tanner, C. C., D'Eugenio, J., McBride, G. B., Sukias, J. P. S. and Thompson, K., "Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms," Ecological Engineering, 12, 67-92(1999). https://doi.org/10.1016/S0925-8574(98)00055-X
  41. Headley, T. R., Huett, D. O. and Davison, L., "Seasonal variation in phosphorus removal processes within reed beds - mass balance investigations," Water Sci. Technol., 48(5), 59-66(2003).
  42. Kim, S. Y. and Geary, P. M., "The impact of biomass harvesting on phosphorus uptake by wetland plants," Water Sci. Technol., 44(11-12), 61-67(2001).
  43. Luderitz, V. and Gerlach, F., "Phosphorus removal in different constructed wetlands," Acta Biotechnologica, 22(1-2), 91-99 (2002). https://doi.org/10.1002/1521-3846(200205)22:1/2<91::AID-ABIO91>3.0.CO;2-5
  44. Sundareshwar, P. V., Morris, J. T., Koepfler, E. K. and Fornwalt, B., "Phosphorus limitation of coastal ecosystem processes," Sci., 299, 563-565(2003). https://doi.org/10.1126/science.1079100
  45. Browning, K. and Greenway, M., "Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia," Water Sci. Technol., 48(5), 183-189(2003).
  46. Molle, P., Lienard, A., Grasmick, A. and Iwema, A., "Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions," Water Sci. Technol., 48(5), 75-83(2003).
  47. Zhu, T., Maehlum, T., Jenssen, P. D. and Krogstad, T., "Phosphorus sorption characteristics of a light-weight aggregate," Water Sci. Technol., 48(5), 93-100(2003).
  48. Forbes, M. G., Dickson, K. R., Golden, T. D., Hudak, P. and Doyle, R. D., "Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands," Environ. Sci. Technol., 38, 892-898(2004). https://doi.org/10.1021/es034341z
  49. Drizo, A., Comeau, Y., Forget, C. and Chapuis, R. P., "Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems," Environ. Sci. Technol., 36, 4642-4648(2002). https://doi.org/10.1021/es011502v
  50. Comeau, Y., Brisson, J., Reville, J. P., Forget, C. and Drizo, A., "Phosphorus removal from trout farm effluents by constructed wetlands," Water Sci. Technol., 44(11-12), 55-60(2001).
  51. Pant, H. K., Reddy, K. R. and Spechler, R. M., "Phosphorus retention in soils from a prospective constructed wetland site: environmental implications," Soil Sci., 167(9), 607-615(2002). https://doi.org/10.1097/00010694-200209000-00005
  52. Brix, H., Arias, C. A. and Del Bubba, M., "Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands," Water Sci. Technol., 44(11-12), 47-54(2001).
  53. Del Bubba, M., Arias, C. A. and Brix, H., "Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by Langmuir isotherm," Water Res., 37, 3390-3400(2003). https://doi.org/10.1016/S0043-1354(03)00231-8
  54. Rustige, H., Tomac, I. and Honer, G., "Investigations on phosphorus retention in subsurface flow constructed wetlands," Water Sci. Technol., 48(5), 67-74(2003).
  55. Llewelyn, J. M., Landing, W. M., Marshall, A. G. and Copper, W. T., "Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic phosphorus species in a treatment wetland after selective isolation and concentration," Anal. Chem., 74, 600-606(2002). https://doi.org/10.1021/ac010909f
  56. Gruneberg, B. and Kern, J., Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands," Water Sci. Technol., 44(11-12), 69-75(2001).
  57. Lund, M. A., Lavery, P. S. and Froend, R. F., "Removing filterable reactive phosphorus from highly coloured stormwater using constructed wetlands," Water Sci. Technol., 44(11-12), 85-92(2001).
  58. 윤춘경, 권순국, 함종화, 노재경, "인공습지 오수처리시설의 처리 성능에 관한 연구," 한국농공학회지, 42(4), 96-105(2000b),
  59. 윤춘경, 권순국, 함종화, 생장기와 동절기의 인공습지 오수처리 성능, 한국농공학회지, 41(4), 37-46(1999).
  60. 윤춘경, 권순국, 권태영, "인공습지의 농촌지역 오수정화시설에 적용가능성 연구," 한국농공학회지, 40(3), 83-93(1998).
  61. 윤춘경, 권순국, 김형중, "인공습지에 의한 농촌오수처리에 관한 연구," 한국농공학회지, 39(4), 55-63(1997a).
  62. 윤춘경, 권순국, 김형중, "인공습지를 이용한 자연정화 오수처리 시설에서 영양물질의 변화와 대장균군의 행동," 한국환경농학회지, 16(3), 249-254(1997b).
  63. 양홍모, 최수명, 윤광식, 간척지 연못-습지 시스템의 질소 인 초 기 처리수준 및 식물성장, 한국농공학회 학술발표 논문집, 2001년 10월 12일(2001).
  64. 김민희, 윤춘경, 함종화, 인공습지와 연못시스템을 이용한 오수 처리, 한국농공학회 학술발표회, 2001년 10월 12일(2001).
  65. 양홍모, 최수명, 윤광식, 담수호 수자원보전을 위한 유역처리 연못-습지 시스템, 한국농공학회 학술발표회, 2000년 10월 14일, pp.557-562(2000).
  66. 윤춘경, 함종화, "습지-저류지에 의한 하구 담수호 수질개선효과 예측," 한국농공학회지, 42(5), 94-102(2000).
  67. 장정렬, 박종민, 권순국, 윤경섭, 농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구, 한국농공학회 학술발표회, 2000년 10월 14일, pp.490-499(2000).
  68. 최인욱, 권순국, 농촌유역의 수질관리를 위한 인공습지 설계모형 개발, 한국농공학회 학술발표회, 2001년 10월 12일(2001).
  69. 윤춘경, 권순국, 전지홍, 생활오수 처리를 위한 인공습지의 처리수 수질 추정식에 관한 연구, 한국물환경학회지, 16(4), 491-499 (2000a).
  70. 윤춘경, 임융호, 김형중, "인공습지에 의한 농공단지 폐수처리," 한국환경농학회지, 16(2), 170-174(1997c).
  71. 안창우, 이도원, 이상일, 김정욱, 습지에서 미나리와 미꾸라지를 이용한 수질정화 가능성, 94년도 한국물환경학회 학술연구발표회 요지집, pp.122-127(1994).
  72. 윤춘경, 함종화, 우선호, 김민희, "인공습지 오수처리수를 이용한 벼재배 실험," 한국농공학회지, 43(2), 94-104(2001).
  73. 정연숙, 오현경, 노찬호, 황길순, "습지식물의 지상부 제거가 생산력과 영양염류 제거량에 미치는 효과," 환경생물학회지, 17(4), 459-465(1999).
  74. 김범철, 전만식, 정근, 정연숙, 황길순, "농촌배수처리용 습지의 생물상 및 유기물 제거율," 환경생물학회지, 17(4), 407-414(1999).
  75. 김귀곤, 조동길, 인공습지 조성후 생물다양성 증진 효과에 관한 연구: 서울공고 생태연못을 중심으로, 한국조경학회지, 27(3), 1-17(1999).