영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag

  • 임정은 (강원대학교 바이오자원환경학과) ;
  • 김권래 (고려대학교 환경생태공학부) ;
  • 이상수 (강원대학교 바이오자원환경학과) ;
  • 권오경 (국립농업과학원) ;
  • 양재의 (강원대학교 바이오자원환경학과) ;
  • 옥용식 (강원대학교 바이오자원환경학과)
  • Lim, Jung-Eun (Department of Biological Environment, Kangwon National University) ;
  • Kim, Kwon-Rae (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Sang-Soo (Department of Biological Environment, Kangwon National University) ;
  • Kwon, Oh-Kyung (National Academy of Agricultural Science) ;
  • Yang, Jae-E (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 투고 : 2010.01.13
  • 심사 : 2010.06.25
  • 발행 : 2010.06.30

초록

다양한 오염원을 통해 토양에 유입된 비소는 작물을 통해 인체로 전이되어 심각한 질환을 유발한다. 특히 가금류 사료에 첨가되는 록살슨(roxarsone)의 경우 퇴비 중에 포함되어 토양으로 유입되면 독성이 강한 무기비소로 변환된다. 본 연구에서는 비소 오염토양의 안정화 공법 적용을 위해 산업부산물인 영가철과 제강슬래그를 투입하여 토양 내 비소의 안정화 연구를 수행하였다. 비소(무기비소)와 록살슨(유기비소)으로 오염된 토양에 영가철 및 제강슬래그를 0%(w/w), 1%(w/w), 3%(w/w), 5%(w/w) 처리하고 30일 간 반응시킨 후 비소의 저감정도를 살펴본 결과 왕수추출에 의한 비소의 총함량은 무처리구에서 비소 오염토양이 2,285 mg/kg, 록살슨 오염토양이 6.5 mg/kg으로 나타났다. 1 N HCl 가용성 비소는 비소 오염토양의 무처리구가 1,351 mg/kg, 영가철 처리구가 713~1,034 mg/kg로 무처리구 대비 최대 40% 이상 감소하였다. 제강슬래그 처리구의 경우 1 N HCl 가용성 비소농도가 소폭으로 감소하였으며 5% 처리구(1,245 mg/kg)에서 통계적으로 유의성 있는 감소효과가 나타났다. 록살슨 오염토양에서는 영가철 1~5% 처리 시 비소의 농도가 0.69~3.13 mg/kg으로 처리 간에 유의성 있게 감소하는 경향을 나타내었으며 제강슬래그의 처리는 통계적으로 유의성 있는 감소효과는 발생하지 않았다. 특히 록살슨 오염토양은 영가철과 제강슬래그 처리 시 검출되는 비소의 양이 무처리구보다 증가하는 것으로 나타나 유기비소인 록살슨이 무기비소로 변환되는 과정에서 영가철과 제강슬래그가 영향을 끼친 것으로 판단되었다. 0.01 M $CaCl_2$ 에 의한 추출(유효태 비소) 결과 비소오염토양의 무처리구 유효태 비소농도는 0.85 mg/kg, 영가철 5% 처리구에서 0.06 mg/kg 로 무처리구 대비 90% 이상 감소하였다. 비소오염토양에 대한 제강슬래그 처리에서는 제강슬래그에 함유된 인과 토양 내 비소가 경쟁하면서 처리량이 증가함에 따라 비소농도가 증가하였다. 록살슨 오염토양의 경우 영가철과 제강슬래그 처리량 증가에 따라 비소의 농도가 감소하였으나 무처리구에 비하여 비소가 높게 검출되었다. 이는 토양에 투입된 영가철과 제강슬래그가 유기비소에서 무기비소로의 변환과정에 영향을 준 것으로 판단된다. 특히 토양 내 인산과 비소는 철에 대해서 경쟁반응을 하는데 이는 영가철 처리 시 검출되는 비소농도에 영향을 미친 것으로 판단되었다.

The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

키워드

참고문헌

  1. 유경열, 옥용식, 양재의, "영가철(Zerovalent Iron)을 이용한 수용액 중 비소(V)의 불용화," 한국환경농학회지, 26(3), 197-203(2007).
  2. 최영무, 최원호, 김정환, 박주양, "층상이중 수산화물을 이용한 5가 비소 흡착 특성," 대한토목학회지, 29(1B), 91-96(2009).
  3. 김대연, 김정규, "비소(Arsenic)에 의한 토양 오염과 복원기술," 생명자원연구, 12, 103-118(2004).
  4. 김명진, 안규홍, 정예진, "토양에서의 비소흡착: 반응속도 및 흡착평형," 대한환경공학회지, 25(4), 407-414(2003).
  5. 이효민, 최시내, 박송자, 황경엽, 조성용, 김선태, "폐광산 지역의 비소오염에 대한 복원목표 설정," 한국지하수토양환경학회지, 3(2), 13-29(1998).
  6. 임정은, 문덕현, 김동진, 권오경, 양재의, 옥용식, "농축수산 폐기물(굴껍질 및 달걀껍질)을 이용한 비소 오염토양의 안정화 효율평가," 대한환경공학회지, 31(12), 1095-1104.
  7. Smedley, P. L., and Kinniburgh, D. G., "A review of the source, behavior and distribution of arsenic in natural waters," Appl. Geochem., 17(5), 517-568(2002). https://doi.org/10.1016/S0883-2927(02)00018-5
  8. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., and Giger, W., "Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat," Environ. Sci. Technol., 35(13), 2621-2626(2001). https://doi.org/10.1021/es010027y
  9. US EPA, Drinking water standards for Arsenic, EPA 815-F-00-015(2001).
  10. 방선백, Xiaoguang Meng, 방기웅, "0가 금속철을 이용한 비소처리에 있어서 용존산소와 pH가 미치는 영향에 대한 연구," 대한환경공학회지, 25(11), 1429-1435(2003).
  11. Nachman, K. E., Mihalic, J. N., Burke, T. A., and Geyh, A. S., "Comparison of arsenic content in pelletized poultry house waste and biosolids fertilizer," Chemosphere, 71(3), 500-506(2007).
  12. Garbarino, J. R., Bednar, A. J., Rutherford, D. W., Beyer, R. S., and Wershaw, R. L., "Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting," Environ. Sci. Technol., 37(8), 1509-1514(2003). https://doi.org/10.1021/es026219q
  13. Jackson, B. P., Seaman, J. C., and Bertsch, P. M., "Fate of arsenic compounds in poultry litter upon land application," Chemosphere, 65(11), 2028-2034(2006). https://doi.org/10.1016/j.chemosphere.2006.06.065
  14. US EPA, Arsenic treatment technologies for soil, waste, and water, EPA 542-R-02-004(2002).
  15. 김태석, 김명진, "비소와 중금속으로 오염된 광미의 정화: 토양 세척에 의한 비소 제거," 대한환경공학회지, 30(8), 808-816(2008).
  16. 구자공, 김경숙, 동종인, 박용하, 배우근, 양지원, 염익태, 윤석표, 이재영, 이주삼, 장윤영, 정재춘, 최상일, 황경엽, 황종식, 토양환 경공학, 1판, 향문사, 서울, p. 176(2007).
  17. 환경부, 오염토양 정화방법 가이드라인(2007).
  18. 양재의, 옥용식, 문덕현, "중금속 오염토양의 안정화 기술," 광해방지기술, 2(2), 121-142(2008).
  19. US EPA, Treatment technologies for site cleanup: annual status report(twelfth edition), EPA 542-R-07-012(2007).
  20. Kumpiene, J., Lagerkvist, A., and Maurice, C., "Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments," Waste Management, 28(1), 215-225(2008). https://doi.org/10.1016/j.wasman.2006.12.012
  21. 박인협, 서영광, 임전택, 이충일, "제강슬래그의 적용이 묘포 및 소나무림의 토양과 식물생장에 미치는 영향," 한국임학회지, 90(6), 699-706(2001).
  22. 임준택, 이인, 박인진, 이충일, 현규환, 권병선, 김학진, "논토양 벼재배에서 제강슬래그의 토양개량제로서의 시용 효과," 한국토양비료학회지, 32(3), 295-303(1999).
  23. Ok, Y. S., Lee, H., Jung, J., Song, H., Chung, N., Lim, S., and Kim, J. G., "Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils," Agric. Chem. Biotechnol., 47(3), 143-146(2004).
  24. 농업과학기술원, 토양 및 식물체 분석법(2000).
  25. Novozamsky, I., Lexmond, T. M., and Houba, V. J. G., "A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants," Int. J. Environ. Anal. Chem., 51(1-4), 47-58(1993). https://doi.org/10.1080/03067319308027610
  26. 환경부, 토양오염공정시험방법, 도서출판 동화기술(2007).
  27. ISO, Soil quality, Extraction of Trace Elements Soluble in Aqua Regia, ISO 11466(1995).
  28. SAS, SAS user's guide, version 9.1., SAS Institute Inc., Cary, North Carolina, USA(2004).
  29. 구성은, 황경진, 김동수, "제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구," 대한환경공학회지, 22(6), 1139-1148(2000).
  30. Blakley, B. R., Clark, E. G., and Fairley, R., "Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) poisoning in pigs," Can. Veterinary J., 31(5), 385-387(1990).
  31. 유경열, "Zero-Valent Iron(ZVI)에 의한 As의 불용화 기작," 농학 석사학위논문, 강원대학교(2003).
  32. Rau, I., Gonzalo, A., and Valiente, M., "Arsenic(V) adsorption by immobilized iron mediation. Modeling of the adsorption process and influence of interfering anions," Reac. Functional Polymers, 54(1-3), 85-94(2003). https://doi.org/10.1016/S1381-5148(02)00184-0
  33. Cortinas, I., Field, J. A., Kopplin, M., Garbarino, J. R., Gandolfi, A. J., and Sierra-alvarez, R., "Anaerobic Biotransformation of Roxarsone and Related N-Substituted Phenylarsonic Acids," Environ. Sci. Technol., 40(9), 2951-2957(2006). https://doi.org/10.1021/es051981o
  34. Roerdink, A. R., and Aldstadt, J. H., "Sensitive method for the determination of roxarsone using solid-phase microextraction with multi-detector gas chromatography," J. Chromatogr. A, 1057(1-2), 177-183(2004). https://doi.org/10.1016/j.chroma.2004.09.071
  35. Huang, P. M., and Fujii, R. Chapter 30 Selenium and Arsenic. In: Sparks, D. L. (ed) Methods of soil analysis, Part 3. Chemical method-SSSA book series no. 5. Segoe Rd., Madison, WI 53711, USA(1996).
  36. 정병간, 최정원, 윤을수, 윤정희, 김유학, "우리나라 밭 토양 화학적 특성," 한국토양비료학회지, 34(5), 326-332(2001).
  37. Raven, K. P., Jain, A., and Loeppert, R. H., "Arsenite and arsenate adsorption on ferrihydrite: kinetics equilibrium and adsorption envelopes," Environ. Sci. Technol., 32(3), 344-349 (1998). https://doi.org/10.1021/es970421p