Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System

챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성

  • Kim, Do-Hyeon (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Kim, Seon-Hong (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Kim, Ji-Hoon (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Cho, Seung-Yeon (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Park, Ju-Myon (Ecosense ET/IT Fusion Technology Institute)
  • 김도현 (연세대학교 환경공학부 환경과학기술연구소) ;
  • 김선홍 (연세대학교 환경공학부 환경과학기술연구소) ;
  • 김지훈 (연세대학교 환경공학부 환경과학기술연구소) ;
  • 조승연 (연세대학교 환경공학부 환경과학기술연구소) ;
  • 박주면 (에코센스 ET/IT 융합기술연구소)
  • Received : 2010.02.08
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.

본 연구의 목적은 1) 시료채취공간에서 ${\pm}10%$ 이내의 공기 유속을 가지는 챔버시스템을 제작하여, 2) 먼지(PM, particulate matter)측정을 위하여 사용되는 PM10과 PM2.5 시료채취기의 이론적 특성을 연구하고, 3) 실험을 통하여 본 연구에 사용된 먼지 시료채취기의 수행 특성을 평가하는데 있다. 챔버 내에서의 먼지 시료채취기의 수행능력을 측정하기 위하여 $20\;{\mu}m$의 공기역학중위입경과 2.0의 기하표준편차 특성을 가지는 옥수수전분을 분포하였다. 챔버 실험에 사용된 시료채취기는 미국 연방규정을 만족하는 각 1개의 APM PM10 및 APM PM2.5 시료채취기와 특수 제작된 3개의 소용량 시료채취기(2개 PM10과 1개의 PM2.5)를 사용하여 평균 공기 유속이 0.67 m/s와 2.15 m/s인 두 조건에서 각 1시간씩 3회 반복하여 총 6회의 실험을 실시하였다. 실험 결과, APM PM시료채취기를 기준 시료채취기로 사용하여 소용량 PM10과 PM2.5 시료채취기는 각 각 0.25와 0.39의 보정계수가 필요하며 이원 분산 분석을 통하여 두 개의 소용량 PM10 시료채취기의 평균 농도값 사이에는 유의적 차이가 있었다. 분리한계직경과 기울기(PM10: $10{\pm}0.5\;{\mu}m$$1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$$1.3{\pm}0.03$)를 가지는 PM10과 PM2.5 시료채취기는 이론적으로 본 연구에 사용된 옥수수전분의 입자특성을 고려하여 86~114%와 64~152%의 먼지농도 범위를 채취하게 된다. 또한, 공기 중에 분포하는 입자의 공기역학중위입경이 해당 시료채취기의 분리한계직경보다 작을 때 시료채취기의 측정 질량농도는 이상적인 질량농도보다 크며, 반대의 경우 시료채취기는 작은 질량농도를 측정한다. 챔버 실험 결과, PM10과 PM2.5의 시료채취기는 각각 37~158%와 55~149% 범위를 가지며 이론적 계산농도보다 큰 범위의 질량 농도를 측정하였고 챔버 내 공기 유속이 2.15 m/s의 조건에서는 0.67 m/s와 비교하여 상대적으로 작은 먼지농도 범위를 가지며 이론적 계산농도와 유사한 먼지농도 범위가 측정되었다.

Keywords

References

  1. Schwartz, J., Dockery, D. W. and Neas, L. M., "Is daily mortality associated specifically with fine particles?," J. Air Waste Manage. Assoc., 46, 927-939(1996). https://doi.org/10.1080/10473289.1996.10467528
  2. Borja-Aburto, V. H., Castillejos, M., Gold, D. R., Bierzwinski, S. and Loomis, D., "Mortality and ambient fine particles in southwest Mexico city," Environ. Health Perspec., 106(12), 849-855(1998). https://doi.org/10.1289/ehp.98106849
  3. US Environmental Protection Agency, 40 CFR Part 50. National Ambient Air Quality Standards for Particulate Matter (1997).
  4. 대도시대기질개선연구, 국립환경과학원(2005).
  5. US Environmental Protection Agency, Air quality criteria for particulate matter. Vols. I, II, and III. Report No. EPA/ 600/P-95/001 aF-cF.3v. Washington, D.C.: U.S. Environmental Protection Agency, Office of Research and Development (1996).
  6. US Environmental Protection Agency, Air quality criteria for particulate matter. Vol. I. Report No. EPA/600/P-99/002aD. Research Triangle Park, N.C.: U.S. Environmental Protection Agency, National Center for Environmental Assessment (2003).
  7. Hinds, W. C., "Ch 4: Particle size statistics," Aerosol technology properties, behavior, and measurement of airborne particles. Wiley Inc., New York, USA, pp. 75-110(1999).
  8. US Environmental Protection Agency (USEPA), 40 CFR Part 53, "Subpart D - Procedures for testing performance characteristics of methods for PM10," Ambient air monitoring references and equivalent methods, WashingtonDC(2000).
  9. US Environmental Protection Agency (USEPA), 40 CFR Part 53, "Subpart F - Procedures for testing performance characteristics of Class II equivalent methods for PM2.5," Ambient air monitoring references and equivalent methods, Washington DC(2000).
  10. McFarland, A. R., and Ortiz, C. A., Evaluation of prototype PM-10 inlets with cyclonic fractionators, in Proceeding of the 76th Annual Meeting of APCA, Atlanta, GA, Paper No. 33.5(1983).
  11. 박주면, 구자건, 정태영, 권동명, 유종익, 서용칠, "PM10 질량농도 측정을 위한 시료채취기의 비교 연구," 대한환경공학회지, 31(2), 153-160(2009).
  12. Buser, M. D., Parnell C. B., Lacey R. E., Shaw B. W. and Auvermann., B. W., "Inherent biases of PM10 and PM2.5 samplers based on the interaction of particle size and sampler performance characteristics," ASAE International Meeting, Sacramento, CA. ASAE Paper No. 011167(2001)
  13. Ranade M. B., Woods M. C., Chen F. L., Purdue L. J. and Rehme K. A., "Wind-tunnel evaluation of pm10 samplers," Aerosol Sci. Technol., 13, 54-71(1990). https://doi.org/10.1080/02786829008959424
  14. Chung, I. P., Dunn-Rankin, D., Phalen, R. F. and Oldham, M. J., "Low-cost wind tunnel for aerosol inhalation studies," Am. Ind. Hyg. Assoc. J., 53(4), 232-236(1992). https://doi.org/10.1080/15298669291359573
  15. Heist, D. K., Richmond-Bryant, J., Eisner, A. and Conner, T., "Development of a versatile aerosol generation system for use in a large wind tunnel," Aerosol Sci. Technol., 37(3), 293-301(2003). https://doi.org/10.1080/02786820300947
  16. The EPA meteorological wind tunnel; Its desing, construction, and operating characteristics, EPA-600/4-79-051, USEPA (1979).
  17. McFarland, A. R., Gupta, R. and Anand, N. K., "Suitability of air sampling locations downstream of bends and static mixing elements," Health Phys., 77, 703-712(1999). https://doi.org/10.1097/00004032-199912000-00015
  18. Park, J-M., Rock, J. C., Wang, L., Seo, Y-C., Bhatnagar, A. and Kim, S-H., "Performance Evaluation of Six Different Aerosol Samplers in a PM Generation Chamber," Atmos. Environ., 43, 280-289(2009). https://doi.org/10.1016/j.atmosenv.2008.09.028
  19. Wang, L., Wanjura, J. D., Parnell, C. B. Jr., Lacey, R. E. and Shaw, B. W., "Performance characteristics of a low-volume PM10 sampler," Transactions of the ASABE, 48(2), 739-748(2005). https://doi.org/10.13031/2013.18316
  20. US Environmental Protection Agency (USEPA), 40 CFR Part 50, "Appendix B - Reference method for the determination of suspended particulate matter in the atmosphere," National primary and secondary ambient air quality standards, Washington DC(1983).
  21. Operation manual of mini-vol portable air sampler, Eugene, OR, USA(2007).
  22. Kingham, S., Durand, M., Aberkane, T., Harrison, J., Wilson, J. G. and Epton, M., "Winter comparison of TEOM, MiniVol and DustTrak PM10 monitors in a woodsmoke environment," Atmos. Environ., 40(2), 338-347(2006). https://doi.org/10.1016/j.atmosenv.2005.09.042
  23. Richard, W. B., Lane, D. D., Marotz, G. A. and Wiener, R. W., "Performance evaluation of the portable MiniVOL particulate matter sampler," Atmos. Environ., 35(35), 6087-6091(2001). https://doi.org/10.1016/S1352-2310(01)00403-4
  24. Zhu, Y., Hinds, W. C., Kim, S-H. and Sioutas, C., "Concentration and size distribution of ultrafine particles near a major highway," J. Air Waste Manage. Assoc., 52, 1032-1042(2002). https://doi.org/10.1080/10473289.2002.10470842