Removal Characteristics of Volatile Organic Compounds in Biofilters and Stoichiometric Analysis of Biological Reaction by Carbon Mass Balance

바이오필터의 휘발성유기화합물 제거특성 및 탄소물질수지를 이용한 생물반응의 양론적 해석

  • Kim, Dae-Keun (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 김대근 (서울과학기술대학교 환경공학과)
  • Received : 2010.05.28
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

This study was performed to investigate the removal characteristics of volatile organic compounds (VOCs) in the gasphase biofilters, and to propose a stoichiometric analysis approach to characterize biological reaction through carbon mass balance. The VOCs studied were toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) as a single substrate for each biofilter. The critical loading rate was determined to be $46.9\;g/m^3{\cdot}hr$, $25.8\;g/m^3{\cdot}hr$, $96.3\;g/m^3{\cdot}hr$, and $66.5\;g/m^3{\cdot}hr$ for toluene, styrene, MEK, and MIBK, respectively. The obtained results indicated that the critical loading rate was well correlated the octanol-water partition coefficient. In the analysis of carbon mass balance, carbon recovery to $CO_2$ became relatively lower as substrate loadings increased, but higher for carbon recovery to biomass. Stoichiometric analysis revealed that biomass yield increased as substrate loadings increased, and its coefficient (g biomass/g substrate) varied from 0.31 to 0.57 for toluene, 0.29 to 0.57 for styrene, 0.08 to 0.56 for MEK, and 0.14 to 0.53 for MIBK.

본 연구는 바이오필터의 기질분해특성을 파악하기 위하여 휘발성유기화합물을 대상으로 임계부하량과 기질특성의 상관관계를 분석하였고, 탄소물질수지를 이용한 생물반응의 양론적 해석을 수행하였다. 반응기에 공급된 기질은 단일물질이며, toluene, styrene, MEK, MIBK를 선정하였다. 바이오필터의 기질임계부하량은 toluene은 $46.9\;g/m^3{\cdot}hr$, styrene은 $25.8\;g/m^3{\cdot}hr$, MEK는 $96.3\;g/m^3{\cdot}hr$, MIBK는 $66.5\;g/m^3{\cdot}hr$이었으며, 임계부하량은 옥탄올-물 분배계수(KOW)와 높은 상관관계를 보였다. 또한 기질부하량이 증가할수록 물질수지 중 $CO_2$에 의한 탄소회수율은 낮아졌고, 바이오매스에 의한 탄소회수율은 높아지는 경향을 보였다. 생물양론적 해석을 통하여 추정된 biomass yield (g biomass/g substrate)는 기질부하량이 증가할수록 커졌으며, toluene은 0.31~0.57, styrene은 0.29~0.57, MEK는 0.08~0.56, MIBK는 0.14~0.53의 변화폭을 보였다.

Keywords

References

  1. 남궁완, 박준석, 이노섭, "바이오필터 기술의 원리와 적용에 관한 고찰," 한국유기성폐자원학회지, 8(1), 60-68(2000).
  2. Deshusses, M. A., "Biological waste air treatment in biofilters," Curr. Opin. Biotechnol., 8(3), 335-339(1997). https://doi.org/10.1016/S0958-1669(97)80013-4
  3. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., and Vaidya, A., "Bioreactors for treatment of VOCs and odours - A review," J. Environ. Manage., 91(5), 1039-1054(2010). https://doi.org/10.1016/j.jenvman.2010.01.006
  4. 송지현, "미생물반응기를 이용한 악취 및 휘발성유기화합물 저감기술의 적용사례 및 발전방향," 대한환경공학회지, 28(11), 1118-1125(2006).
  5. Zhu, X. Q., Alonso, C., Suidan, M. T., Cao, H. W., Kim, B. J. and Kim, B. R., "The effect of liquid phase on VOC removal in trickle-bed biofilters," Water Sci. Technol., 38(3), 315-322(1998). https://doi.org/10.1016/S0273-1223(98)00557-5
  6. du Plessis, C. A., Kinney, K. A., Schroeder, E. D., Chang, D. P. Y. and Scow, K. M., "Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter," Biotechnol. Bioeng., 58(4), 408-415(1998). https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<408::AID-BIT8>3.0.CO;2-N
  7. Song, J. H. and Kinney, K. A., "Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: Linking biofilm properties to bioreactor performance," Biotechnol. Bioeng., 68(5), 508-516(2000). https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P
  8. Kim, D. and Sorial, G. A., "Role of biological activity and biomass distribution in air biofilter performance," Chemosphere, 66(9), 1758-1764(2007). https://doi.org/10.1016/j.chemosphere.2006.06.069
  9. Rittmann, B. E. and McCarty, P. L., Environmental biotechnology: principles and applications, McGraw-Hill, Boston, pp. 126-144(2001).
  10. Smith, F. L., Sorial, G. A., Suidan, M. T., Biswas, P. and Brenner, R. C., "Development and demonstration of an explicit lumped-parameter biofilter model and design equation incorporating Monod kinetics," J. Air Waste Manage. Assoc., 52(2), 208-219(2002). https://doi.org/10.1080/10473289.2002.10470771
  11. Song, J. Y. and Kinney, K. A., "A model to predict longterm performance of vapor-phase bioreactors: A cellular automaton approach," Environ. Sci. Technol., 36(11), 2498-2507(2002). https://doi.org/10.1021/es0156183
  12. Iliuta, I. and Larachi, F. ç., "Modeling simultaneous biological clogging and physical plugging in trickle-bed bioreactors for wastewater treatment," Chem. Eng. Sci., 60(5), 1477-1489(2005). https://doi.org/10.1016/j.ces.2004.10.016
  13. Cai, Z., Kim, D., Sorial, G. A., Saikaly, R., Zein, M. M. and Oerther, D. B., "Performance and microbial diversity of a trickle-bed air biofilter under interchanging contaminants," Eng. Life Sci., 6(1), 37-42(2006). https://doi.org/10.1002/elsc.200620111
  14. Chung, Y.-C., "Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases," J. Hazard. Mater., 144(1-2), 377-385 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.045
  15. Grove, J. A., Zhang, H. X., Anderson, W. A. and Moo- Young, M., "Estimation of carbon recovery and biomass yield in the biofiltration of octane," Environ. Eng. Sci., 26(10), 1497-1502(2009). https://doi.org/10.1089/ees.2008.0350
  16. Song, J., Ramirez, J. and Kinney, K. A., "Nitrogen utilization in a vapor-phase biofilter," Water Res., 37(18), 4497-4505(2003). https://doi.org/10.1016/S0043-1354(03)00408-1
  17. Mutafov, S., Angelova, B., Schmauder, H. P., Avramova, T. and Boyadjieva, L., "Stoichiometry of microbial continuousflow purification of toluene-contaminated air," Appl. Microbiol. Biotechnol., 65(2), 228-234(2004).
  18. Jorio, H., Brzezinski, R. and Heitz, M., "A novel procedure for the measurement of the kinetics of styrene biodegradation in a biofilter," J. Chem. Technol. Biotechnol., 80(7), 796-804(2005). https://doi.org/10.1002/jctb.1245
  19. Sorial, G. A., Smith, F. L., Suidan, M. T., Pandit, A., Biswas, P. and Brenner, R. C., "Evaluation of trickle-bed air biofilter performance for styrene removal," Water Res., 32(5), 1593-1603(1998). https://doi.org/10.1016/S0043-1354(97)00355-2
  20. Kim, D., Cai, Z. and Sorial, G. A., "Evaluation of trickle bed air biofilter performance under periodic stressed operating conditions as a function of styrene loading," J. Air Waste Manage. Assoc., 55(2), 200-209(2005). https://doi.org/10.1080/10473289.2005.10464611
  21. Smith, F. L., Sorial, G. A., Suidan, M. T., Breen, A. W., Biswas, P. and Brenner, R. C., "Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings," Environ. Sci. Technol., 30(5), 1744-1751(1996). https://doi.org/10.1021/es950743y
  22. APHA/AWWA/APCF, Standard methods for the examination of water and wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, D.C.(1998).
  23. Watts, R. J., Hazardous wastes: sources, pathways, receptors, John Wiley & Sons, Inc., New York, pp. 271-306(1997).
  24. Aizpuru, A., Malhautier, L. and Fanlo, J. L., "Quantitative structure-activity relationship modeling of biofiltration removal," J. Environ. Eng., 128(10), 953-959(2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:10(953)
  25. Deshusses, M. A. and Johnson, C. T., "Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment," Environ. Sci. Technol., 34(3), 461-467(2000). https://doi.org/10.1021/es9909172
  26. Zhu, X. Q., Suidan, M. T., Pruden, A., Yang, C. P., Alonso, C., Kim, B. J. and Kim, B. R., "Effect of substrate Henry's constant on biofilter performance," J. Air Waste Manage. Assoc., 54(4), 409-418(2004). https://doi.org/10.1080/10473289.2004.10470918
  27. Zhu, X., Suidan, M. T., Alonso, C., Yu, T., Kim, B. J. and Kim, B. R., "Biofilm structure and mass transfer in a gas phase trickle-bed biofilter," Water Sci. Technol., 43(1), 285-293(2001).
  28. Alonso, C., Suidan, M. T., Kim, B. R. and Kim, B. J., "Dynamic mathematical model for the biodegradation of VOCs in a biofilter: Biomass accumulation study," Environ. Sci. Technol., 32(20), 3118-3123(1998). https://doi.org/10.1021/es9711021
  29. Shareefdeen, Z. and Baltzis, B. C., "Biofiltration of toluene vapor under steady-state and transient conditions - theory and experimental results," Chem. Eng. Sci., 49(24A), 4347-4360 (1994). https://doi.org/10.1016/S0009-2509(05)80026-0
  30. Alonso, C., Zhu, X. Q., Suidan, M. T., Kim, B. R. and Kim, B. J., "Parameter estimation in biofilter systems," Environ. Sci. Technol., 34(11), 2318-2323(2000). https://doi.org/10.1021/es990329o
  31. Devillers, J., "Ecotoxicity of chemicals to photobacterium phosphoreum," Handbooks of ecotoxicological data, Kaiser, K.L.E., and Devillers, J. (Eds.), Gordon and Breach Science Publishers, Amsterdam(1994).