Changes of Microbial Community Structure According to a Changes of Season and Influent Characteristics in Biological Wastewater Treatment

생물학적 폐수처리 공정에서의 계절 및 유입수 성상 변화에 따른 미생물 군집 특성 변화

  • 손형식 (부산대학교 미생물학과) ;
  • 손희종 (부산시 상수도사업본부) ;
  • 김미아 (부산대학교 미생물학과) ;
  • 유은연 (부산대학교 Bio-IT 파운드리센터) ;
  • 이건 (세정 바이오텍) ;
  • 이상준 (부산대학교 미생물학과)
  • Received : 2010.07.07
  • Accepted : 2010.08.30
  • Published : 2010.08.31


The bacterial community structure in biological reactor in wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH). Samples were collected at different three points in wastewater treatment system. Through treatment processes, BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of was removal efficiency was 83.1~98.6%, 67.2~85.2% respectively. Microbial community of aerobic tank and oxic tank were similar but anoxic tank was different (RRP group was increased about tripple) by DGGE and FISH in sludge (2007 October and 2008 January). Samples in 2007 October and 2008 January were dominant ${\alpha}$-Proteobacteria and CF group respectively. Sludge in 2008 April were different comparing former results dominant others as 65~80%. Others group was dominant. Eubacteria by FISH with the probe EUB338 was about $1.7{\sim}7.6{\times}10^9\;cells/mL$. It could be successfully observed bacterial community in biological wastewater system.

실험기간 동안 생물학적 처리공정에서의 BOD와 COD의 제거율은 각각 83.1~98.6%, 67.2~85.2%였으며, 단위 공정별로 미생물 군집 변화에서는 가을과 겨울의 경우 호기조, 산소조 및 무산소조에서 전체적으로 비슷한 군집양상을 나타내었다. RRP 그룹의 경우는 무산소조에서 3배 정도 증가하여 DGGE 밴드결과에서 새로운 밴드들이 나타난 것과 일치하는 경향을 보였다. 또한 비슷한 분포를 나타내었지만, 가을엔 ${\alpha}$-Proteobacteria가 우점하였고, 겨울엔 CF 그룹이 우점을 보였다. 봄에 분석한 DGGE와 FISH의 결과에서는 유입수의 성상변화에 따른 미생물의 군집 패턴이 가을과 겨울의 경우에 비해 완전히 다른 패턴을 보였으며, FISH 결과에서 others 그룹의 증가와 DGGE 밴드결과에서 새로운 밴드들이 나타난 것과 일치하는 경향을 보였다. Eubacteria는 $1.7{\sim}7.6{\times}10^9\;cells/mL$. 정도를 보였으며, 전체적인 미생물 군집을 평가하는데 FISH와 DGGE는 매우 효과적이었고, 계절별 및 공정별 군집의 변화에 대해 유용한 평가가 가능하였다.



Supported by : 부산대학교


  1. Eikelboom, D. H., "Filamentous organisms observed in activated sludge," Water Res., 9, 365-388(1975).
  2. Richard, M., Hao, O. and Jenkins, D., "Growth kinetics of Sphaerotilus species and their significance in activated sludge bulking," J. Water Pollut. Control Fed., 57, 68-81(1985).
  3. Andreasen, K. and Nielsen, P. H., "Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge," Appl. Environ. Microbiol., 63, 3662-3668(1997).
  4. Nielsen, P. H., Andreasen, K., Wagner, M., Blackall, L. L., Lemmer, H. and Seviour, R. J., "Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes," Water Sci. Technol., 37, 423-440(1998).
  5. Eikelboom, D. H., Process Control of Activated Sludge Plants by Microscopic Investigation, IWA Publishing, London( 2000).
  6. Ohashi, A., Viraj de Silva, D. G., Mobarry, B., Manem, J. A., Stahl, D. A. and Rittmann, B. E., "Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs," Water Sci. Technol., 32(8), 75-84(1995).
  7. Zhang, T. C. and Bishop, P. L., "Evaluation of substrate and pH effects in a nitrifying biofilm," Water Environ. Res., 68(7), 1107-1115(1996).
  8. Lazarova, V., Bellahcen, D., Manem, J., Stahl, D. A. and Rittmann, B. E., "Influence of operating conditions on population dynamics in nitrifying biofilms," Water Sci. Technol., 39(7), 5-11(1999).
  9. Kloep, F., Roske, I. and Neu, T. R., "Performance and microbial structure of a nitrifying fluidized-bed reactor," Water Res., 34(1), 311-319(2000).
  10. 김동진, 한동우, 이수철, 박병곤, 권일, 성창근, 박완철, "생물막 반응기에서의 폐수 처리 및 fluorescence in situ hybridization," 한국생물공학회지, 17(1), 80-87(2002).
  11. Wong, M. T., Mino, T., Seviour, R. J., Onuki, M. and Liu, W. T., "In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan," Water Res., 39, 2901-2914(2005).
  12. Araya, R., Tani, K., Tagaki, T., Yamaguchi, N. and Nasu, M., "Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis," FEMS Microbiol. Ecol., 43, 111-119(2003).
  13. Patil, S. S., Kumar, M. S. and Ball, A. S., "Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater," Appl. Microbiol. Biotechnol., 87, 353-363(2010).
  14. Dong, X. and Reddy, G. B., "Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique," Bioresour. Technol., 101, 1175-1182 (2010).
  15. Mino, T., Satoh, H., Onuki, M., Akiyama, T., Nomura, T. and Matsuo, T., "Strategic approach for characterization of bacterial community in enhanced biological phosphate removal (EBPR) process," In Advances in Water and Wastewater Treatment Technology: Molecular Technology, Nutrient Removal, Sludge Reduction and Environmental Health, Matsuo, T., Hanaki, K., Takizawa, S., and Satoh, H., (Eds.), Elsevier, London(2001).
  16. Nielsen, P. H., Kragelund, C., Seviour, R. J. and Nielsen, J. L., "Identity and ecophysiology of filamentous bacteria in activated sludge," FEMS Microbiol. Rev., 33, 969-998(2009).
  17. Jang, A., Bishop, P. L., Okabe, S., Lee, S. G. and Kim, I. S., "Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes," Water Sci. Technol., 47(1), 49-57(2002).
  18. Kim, G. T., Webster, G., Wimpenny, J. W., Kim, B. H., Kim, H. J. and Weightman, A. J., "Bacterial community structure, compartmentalization and activity in a microbial fuel cell," J. Appl. Microbiol., 101(3), 698-710(2006).
  19. Wagner, M., Amann, R., Lemmer, H. and Scheleifer, K., "Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure," Appl. Environ. Microbiol., 59(5), 1520-1525(1993).
  20. Glockner, F. O., Fuchs, B. M. and Amann, R., "Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization," Appl. Environ. Microbiol., 65(8), 3721-3726(1999).
  21. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D. and Schleifer, K. H., "Development of an rRNAtargeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge," Appl. Environ. Microbial., 60(3), 792-800(1994).
  22. Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E. and Stahl, D. A., "Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria," Appl. Environ. Microbiol., 62(6), 2156-2162(1996).
  23. Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y. and Molin, S., "In situ identification of polyphosphateand polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process," Environ. Microbiol., 3(2), 110-122(2001).
  24. Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. H., "Phylogenetic analysis and in situ identification of bacteria in activated sludge," Appl. Environ. Microbiol., 63(7), 2884-2896(1997).
  25. Schramm, A., Beer, D., Wagner, M. and Amann, R., "Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor," Appl. Environ. Microbiol., 64(9), 3480-3485 (1998).
  26. Szpyrkowicz, L., Rigoni-Stern, S. and Zilio, F., "Pilot plant studies on tannery wastwater treatment with the objective to reduce sludge production," Water Sci. Technol., 23, 1863-1871(1991).
  27. Kabdasli, I., Tunay, O. and Orhon, D., "The treatability of chromium tannery wastes," Water Sci. Technol., 28, 97-105 (1993).