DOI QR코드

DOI QR Code

A Time-based Apriori Algorithm

아이템 사용시간을 고려한 Apriori알고리즘

  • 강형창 (제주대학교 자연과학대학 전산통계학과) ;
  • 양근탁 (제주대학교 자연과학대학 전산통계학과) ;
  • 김철수 (제주대학교 자연과학대학 전산통계학과) ;
  • 이윤정 (제주대학교 자연과학대학 전산통계학과) ;
  • 이봉규 (제주대학교 자연과학대학 전산통계학과)
  • Received : 2009.12.22
  • Accepted : 2010.06.07
  • Published : 2010.07.01

Abstract

Association rules are very useful and interesting patterns for discovering preferences of each person in digital-content services. The Apriori algorithm is an influential algorithm for mining frequent itemsets for association rules. However, since this algorithm does not take into account reference times of each content as an important support factor, it cannot be used to extract associations among time-based data. This paper proposes an augmented Apriori algorithm discovers association rules using both frequencies and usage times of each item.

References

  1. 김은선, 박동운, 박영서, "디지털 콘텐츠 세부사업의 평가프레임 제안 및 유망성 비교분석", 한국콘텐츠학회논문지, 6(11): pp. 38-44, 2006.
  2. Agrawal, R. and Srikant, R., "Fast algorithms for mining association rules", In Proceeding of the 20th VLDB Conference, pp. 487-499, Santiago, Chile, 1994.
  3. Agrawal, R. and Srikant, R., "Fast algorithms for mining association rules", In Proceeding of the 20th VLDB Conference, pp. 487-499, Santiago, Chile, 1994.
  4. Agrawal, R. and Srikant, R., "Fast algorithms for mining association rules", The Korean Communications in Statistics, 12(1): 191-197, 2005. https://doi.org/10.5351/CKSS.2005.12.1.191
  5. Park, J.S., Chen, M.S., and Philips, S.Y. (1995). An effecvie hash-based algorithms for mining association rules, Proceedings of ACM SIGMOD conference on Management of Data.
  6. Mannila, H., Toivonen, H., and Verkanmo, A. I., "Discovering frequent episodes in equences," In Proc. of the First Int''1 Conference on Knowledge Discovery and Data Mining, pp. 210-215. 1995.
  7. Cheung, D.W., Han, J., Ng, V., Fu, A.W., Fu, Y. (1996). A Fast distribution algorithm for mining association rules, Int's Conference on Parallel and Distributes Information System, Miami Beach, Florida.
  8. Jiawei Han, Miceline Kamber, Data Mining: Concepts and Techniques. Simon Fraser University, Simon Fraser University, pp. 227-236, 2001.
  9. 김근형, 황병웅, 김민철, "중요지지도를 고려한 연관규칙 탐사 알고리즘", 정보처리학회 논문지, 11-D(3): 545-552, 2004.
  10. 김정현, 김재련, "시간을 고려한 연관규칙을 이용한 웹사용자 접근패턴 분석", 한국경영과학회/대한산업공학회 춘계공동학술대회 발표논문집, 관동대학교, 양양, pp. 852-855, 2001.