Characterization of a Nitrogen Fixing Bacteria Mycobacterium hominis sp. AKC-10 Isolated from the Wetland

습지에서 분리한 질소고정 세균인 Mycobacterium hominis sp. AKC-10의 특성

  • Hong, Sun-Hwa (Department of Environmental Engineerin and Environmental Microbiology, Suwon University) ;
  • Shin, Ki-Chul (Department of Environmental Engineerin and Environmental Microbiology, Suwon University) ;
  • Lee, Eun-Young (Department of Environmental Engineerin and Environmental Microbiology, Suwon University)
  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 신기철 (수원대학교 환경에너지공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Received : 2010.05.26
  • Accepted : 2010.08.24
  • Published : 2010.09.28

Abstract

Nitrogen is an element need to grow plants growth. Plants take up nitrogen in the form of nitrate or ammonium. Most of plants absorb nitrogen source as fertilizers. But from 50 to 70% of fertilizers applied were washed away. This study was conducted to isolate free-living nitrogen fixing bacteria from reed and to examine its beneficial traits for developing sustainable biofertilizers. Enriched consortium obtained from a reed in Ansan was developed for the fixing of nitrogen. Nitrogen fixing bacteria isolated from an enriched culture in Congo Red Medium was analyzed by 16s rDNA sequencing. AKC-10 was isolated and shown to have excellent nitrogen fixing ability. The optimum conditions of nitrogen fixing ability were $25^{\circ}C$ ($237.50{\pm}39.65\;nmole{\cdot}mg-protein^{-1}{\cdot}h^{-1}$ and pH 7 ($168.335{\pm}12.84$ nmole/hr mg-protein). It was identified as Microbacterium hominis [(AKC-10 (similarity : 99%)]. This strain was had to IAA (indole-3-acetic acid) productivity and ACC(1-aminocyclopropane-1-carboxylic acid) deaminase activity. Therefore, Microbacterium hominis AKC-10 stimulated plant development in the soil, enhancing the efficiency of remediation.

Keywords

References

  1. Adenipekun, C. O. and O. S. Isikhuemhen. 2008. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer). Pak. J. Biol. Sci. 11: 1634-1637. https://doi.org/10.3923/pjbs.2008.1634.1637
  2. Adeniyi, A. A. and O. J. Owoade. 2009. Total petroleum hydrocarbons and trace heavy metals in roadside soils along the Lagos-Badagry expressway, Nigeria. Environ. Monit. Assess. Published online, 24 July.
  3. Ahn, T. S., J. O. Ka, G. H. Lee, and H. G. Song. 2007. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. J. Microbiol. 45: 171-174.
  4. Aslantas, R., C. Ramazan, and F. Sahin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Horticamsterdam. 111: 371-377. https://doi.org/10.1016/j.scienta.2006.12.016
  5. Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Burd, G. I., D. G. Dixon, and B. R. Glick. 2000. Plant growthpromoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245. https://doi.org/10.1139/w99-143
  7. Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
  8. Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
  9. Eckert, B., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C(4)-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51: 17-26.
  10. Fijalkowska, S., K. Lisowska, and J. Dlugonski. 1998. Bacterial elimination of polycyclic hydrocarbons and heavy metals. J. Basic Microbiol. 38: 361-369. https://doi.org/10.1002/(SICI)1521-4028(199811)38:5/6<361::AID-JOBM361>3.0.CO;2-Z
  11. Frankenberger, W. T. Jr. and W. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241. https://doi.org/10.2136/sssaj1983.03615995004700020012x
  12. Glick, B. R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
  13. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536. https://doi.org/10.1139/m95-070
  14. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
  15. Hardy, R. F., R. D. Holsten, E. K. Jackson, and R. C. Burns. 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43: 1185-1207. https://doi.org/10.1104/pp.43.8.1185
  16. Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
  17. Kahindi, J. H. P. 1997. Oxygen, hydrogen and nitrogen fixation in Azotobacter. Soil Biol. Biochem. 29: 863-869. https://doi.org/10.1016/S0038-0717(96)00213-1
  18. Kalloniati, C., D. Tsikou, V. Lampiri, M. N. Fotelli, H. Rennenberg, I. Chatzipavlidis, C. Fasseas, P. Katinakis, and E. Flemetakis. 2009. Characterization of a Mesorhizobium loti -type carbonic anhydrase and its role in symbiotic nitrogen fixation. J. Bacteriol. 191: 2593-2660. https://doi.org/10.1128/JB.01456-08
  19. Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant soil 194: 65-79. https://doi.org/10.1023/A:1004260222528
  20. Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.
  21. Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.
  22. Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153: 497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  23. Li, J. and R. J. Kremer. 2006. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control 39: 58-65. https://doi.org/10.1016/j.biocontrol.2006.04.016
  24. Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plantgrowth promoting bacteria. J. Hazard. Mater. 166: 1154-1161. https://doi.org/10.1016/j.jhazmat.2008.12.018
  25. Oldroyd, G. E., M. J. Harrison, and M. Udvardi. 2005. Peace talks and trade deals. Keys to long-term harmony in legumemicrobe symbioses. Plant Physiol. 137: 1205-1210. https://doi.org/10.1104/pp.104.057661
  26. Pattern, C. L. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220. https://doi.org/10.1139/m96-032
  27. Prell, J. and P. Poole. 2006. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 14: 161-168. https://doi.org/10.1016/j.tim.2006.02.005
  28. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderphores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  29. Seefeldt, L. C., M. H. Brian, and R. D. Dennis. 2009. Mechanism of mo-dependent nitrogenase. Annu. Res. Biochem. 78: 701-722. https://doi.org/10.1146/annurev.biochem.78.070907.103812
  30. Siddiqui, Z. A. and K. Futai. 2009. Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plantgrowth- promoting rhizobacteria and cattle manure. Pest. Manag. Sci. 65: 943-948. https://doi.org/10.1002/ps.1777
  31. Smil, V. 2001. Enriching the Earth: In Fritz Haber, Carl Bosch, and the Transformation of World Food Production. J. Econo. His. 61: 874-875.
  32. Smreczak, B., B. Maliszewska-Kordybach, and S. Martyniuk. 1999. Effect of PAHs and heavy metals on activity of soil microflora. In: Bioavailability of organic xenobiotics in the environment NATO ASI Series 64: 377-380.
  33. Sokhn, J., F. A. A. M. De Leij, T. D. Hart, and J. M. Lynch. 2001. Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett. Appl. Microbiol. 33: 164-168. https://doi.org/10.1046/j.1472-765x.2001.00972.x
  34. Udvardi, M. K., and D. A. Day. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 493-523. https://doi.org/10.1146/annurev.arplant.48.1.493
  35. Whang, K. S. 2001. Taxonomic characteristics of nitrogenfixing oilgotrophic bacteria from forest soil. K. J. Microbiol. 2: 114-119.
  36. White, J., J. Prell, E. K. James, and P. Poole. 2007. Nutrient sharing between symbionts. Plant Physiol. 144: 604-614. https://doi.org/10.1104/pp.107.097741
  37. Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr. Microb. 32: 67-71. https://doi.org/10.1007/s002849900012