Rhizoremediation of Petroleum and Heavy Metal-Contaminated Soil using Rhizobacteria and Zea mays

근권세균과 옥수수를 이용한 유류 및 중금속 복합 오염토양의 Rhizoremediation

  • Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Sung-Hyun (Devision of Ecoscience, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, In-Sook (Devision of Ecoscience, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 홍선화 (이화여자대학교 환경공학과) ;
  • 구소연 (이화여자대학교 환경공학과) ;
  • 김성현 (이화여자대학교 에코과학부) ;
  • 류희욱 (이화여자대학교 환경공학과) ;
  • 이인숙 (숭실대학교 환경화학공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2010.05.28
  • Accepted : 2010.08.24
  • Published : 2010.09.28

Abstract

In this study, the rhizoremediation of petroleum and heavy metal-contaminated soil was characterized employing Zea mays and two plant-growth promoting rhizobacteria, Gordonia sp. S2RP-17 and Serratia sp. SY5 which have petroleum-degrading activity and heavy metal-resistance, respectively. After 51 days, the average dry weights of Zea mays' root without and with the inoculation of rhizobacteria were $1.9{\pm}0.2$ and $5.6{\pm}0.7\;g$, respectively. Compared with initial TPH concentration in soil ($21,576{\pm}3,426\;mg-TPH{\cdot}kg-dry\;soil^{-1}$), the residual TPH concentrations were $220{\pm}98\;mg-TPH{\cdot}kg-dry\;soil^{-1}$ in soil planted with Zea mays, and $20{\pm}41\;mg-TPH{\cdot}kg-dry\;soil^{-1}$ in soil planted with Zea mays and inoculated with rhizobacteria. These results indicated that the inoculation of S2RP-17 and SY5 could promote TPH removability in soil as well as the growth of Zea mays' root. There was little positive effect of the rhizobacteria inoculation on the removability of heavy metal such as Cu, Cd and Pb in soil planted with Zea mays.

본 연구에서는 유류 분해능이 있고 식물 성장 촉진능력을 가진 Gordonia sp. S2RP-17, 중금속에 내성을 가지며 식물 성장촉진 능력이 있는 Serratia sp. SY5 및 옥수수를 이용하여 유류 및 중금속 오염 토양의 정화 특성을 조사하였다. 유류 및 중금속 오염 토양에서 51일간 재배한 옥수수의 평균 뿌리 건중량은 $1.9{\pm}0.2\;g$이었으나, 근권세균을 접종한 오염 토양에서 재배한 옥수수의 뿌리 건중량은 $5.6{\pm}0.7\;g$로, 근권세균 접종에 의해 옥수수의 뿌리의 중량이 유의적으로 증가함을 알 수 있었다(p<0.01). 초기에는 토양의 TPH 농도는 $21,576{\pm}3,426\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었는데, 51일 후 옥수수만을 식재한 토양의 잔류 TPH 농도는 $220{\pm}98\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었고, 옥수수와 함께 근권세균을 접종한 토양의 잔류 TPH 농도는 $20{\pm}41\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었다. 이러한 결과로부터 옥수수 식재에 의해 대부분의 TPH를 제거할 수 있으며, 옥수수와 함께 근권세균을 접종하면 TPH 효율이 조금 더 향상됨을 알 수 있었다. 그러나, 중금속 제거효율에 미치는 근권세균 접종 효과는 거의 없었다.

Keywords

References

  1. Al-Sharidah, A., A. Richardt, J. R. Golecki, R. Dierstein, and M. H. Tadros. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol. Res. 155: 157-164. https://doi.org/10.1016/S0944-5013(00)80029-4
  2. Andreoni, V., L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell'Amico, M. Colombo, and L. Gianfreda. 2004. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57: 401-412. https://doi.org/10.1016/j.chemosphere.2004.06.013
  3. Boopathy, R. 2004. Factors limiting bioremediation technologies(review paper). Bioresour. Technol. 74: 63-67.
  4. Deikman, J. 1997. Molecular mechanism of ethylene regulation of gene transcription. Physiol. Plant 100: 561-566. https://doi.org/10.1111/j.1399-3054.1997.tb03061.x
  5. El-Gendy, A. S., S. Svingos, D. Brice, J. H. Garretson, and J. Schnoor. 2009. Assessments of the efficacy of a long-term application of a phytoremediation system using hybrid poplar trees at former oil tank farm sites. Water Environ. Res. 81: 486-498. https://doi.org/10.2175/106143008X357011
  6. Etsuko, K., M., M. T. Shyoji, and T. Masahiko. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Bot. 55: 110-119. https://doi.org/10.1016/j.envexpbot.2004.10.005
  7. Fijalkowska, S., K. Lisowska, and J. Dlugonski. 1998. Bacterial elimination of polycyclic hydrocarbons and heavy metals. J. Basic Microbiol. 38: 361-369. https://doi.org/10.1002/(SICI)1521-4028(199811)38:5/6<361::AID-JOBM361>3.0.CO;2-Z
  8. Frankenberger, W. T. and W. J. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241. https://doi.org/10.2136/sssaj1983.03615995004700020012x
  9. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536. https://doi.org/10.1139/m95-070
  10. Hamnann, C., J. Hegemann, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173: 255-263. https://doi.org/10.1111/j.1574-6968.1999.tb13510.x
  11. Haritash A. K. and C. P. Kaushik. 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 169: 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  12. Hong, S. H. and K. S. Cho. 2007. Effects of plants rhizobacteria and physicochemical factors on the phytoremediation of contaminated Soil. Kor. J. Microbiol. Biotechnol. 35: 261-271.
  13. Hong, S. H. 2010. Rhizoremediation of diesel and heavy metal contaminated soil, Doctor's thesis, Ewha Womans University, South Korea.
  14. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 91: 139-147.
  15. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2004. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130: 465-76. https://doi.org/10.1016/j.envpol.2003.09.031
  16. Jankong, P., P. Visoottiviseth, and S. Khokiattiwong. 2007. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68: 1906-1912. https://doi.org/10.1016/j.chemosphere.2007.02.061
  17. Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
  18. Johnson, D. L., K. L. Maguire, D. R. Anderson, and S. P. McGrath. 2004. Enhanced dissipation of chrysene in planted soil:the inpact of a rhizobial inoculume. Soil Boil. Biochem. 36: 33-38. https://doi.org/10.1016/j.soilbio.2003.07.004
  19. Kim, J. Y. and K. S. Cho. 2006. Bioremediation of oilcontaminated soil using rhizobacteria and plant. Kor. J. Microbiol. Biotechnol. 34: 185-195.
  20. Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.
  21. Koo, S. Y., and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.
  22. Lee, E. H. and K. S. Cho. 2009. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J. Hazard. Mater. 167: 669-674. https://doi.org/10.1016/j.jhazmat.2009.01.035
  23. Lee, E. H., J. Kim, K. S. Cho, Y. G. Ahn, and G. S. Hwang. 2009. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. 17: 64-77.
  24. Liste, H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43-52. https://doi.org/10.1016/j.apsoil.2005.04.006
  25. Ma, Y., M. Rajkuma, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plantgrowth promoting bacteria. J. Hazard. Mater. 166: 1154-1161. https://doi.org/10.1016/j.jhazmat.2008.12.018
  26. Macek, T. M. and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation (research review paper). Biotechnol. Adv. 18: 23-34. https://doi.org/10.1016/S0734-9750(99)00034-8
  27. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  28. Muratova, A. Y., T. V. Dmitrieva, L. V. Panchenko, and O. V. Turkovskaya. 2008. Phytoremediation of oil-sludgecontaminated soil. Int. J. Phytoremediat. 10: 486-502. https://doi.org/10.1080/15226510802114920
  29. Palmroth, M. R. T., J. Pichtel, and J. Puhkka. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour. Technol. 84: 221-228. https://doi.org/10.1016/S0960-8524(02)00055-X
  30. Pepi, M., A. Minacci, F. Di cello, F. Baldi, and R. Fani. 2003. Logn-term analysis of diesel fuel consumption in a coculture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Antonie Van Leeuwenhoek. 83: 3-9. https://doi.org/10.1023/A:1022930421705
  31. Pepper, I. L., C. P. Gerba, and J. W. Brendecke. 1995. Environmental Microbiology: A Laboratory Manual, Academic Press Inc., New York, USA.
  32. Plaza, G. A., K. Ulfig, and R. L. Brigmon. 2005. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Pol. J. Microbiol. 54: 161-167.
  33. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2006. Cultivation- dependent characterization of rhizobacterial communities from field grown Chiness cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180. https://doi.org/10.1007/s11104-006-9035-1
  34. Prasad, M. N. V., and H. M. O. Freitas. 2003. Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 6: 285-321.
  35. Radwan, S. S., H. Al-Awadhi, N. A. Sorkhoh, and I. M. El- Nemr. 1998. Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol. Res. 153: 247-251. https://doi.org/10.1016/S0944-5013(98)80007-4
  36. Rajkumar, M., Y. Ma, and H. Freitas. 2008. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J. Basic Microb. 48: 500-508. https://doi.org/10.1002/jobm.200800073
  37. Reed, M. L. E. and B. R.Glick. 2005. Plant growthpromoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr. Microbiol. 51: 425-429. https://doi.org/10.1007/s00284-005-4584-8
  38. Riis, V., W. Babel, and O. H. Pucci. 2002. Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere 49: 559-568. https://doi.org/10.1016/S0045-6535(02)00386-7
  39. Ronchel, M. C. and J. L. Ramos. 2001. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67: 2649-2656. https://doi.org/10.1128/AEM.67.6.2649-2656.2001
  40. Safronova, V. I., V. V. Stepanok, G. L. Engqvist, Y. V. Alekseyev, and A. A. Belimov. 2006. Rootassociated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils 42: 267-72. https://doi.org/10.1007/s00374-005-0024-y
  41. Shimp, J. F., J. C. Tracy, L. C. Davis, E. Lee, W. Huang, L. E. Erickson, and J. L. Schnoor. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic meterials. Envoron. Sci. Technol. 23: 41-77. https://doi.org/10.1080/10643389309388441
  42. Sokhn, J., F. A. A. M. De Leij, T. D. Hart, and J. M. Lynch. 2001. Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett. Appl. Microbiol. 33: 164-168. https://doi.org/10.1046/j.1472-765x.2001.00972.x
  43. Tesar, M., T. G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol. Biochem. 34: 1883-1892. https://doi.org/10.1016/S0038-0717(02)00202-X
  44. Toshitomi, K. J. and J. R. Shann. 2001. Corn(Zea mays) root exudates and their impact on $^{14}C$-pyrene mineralization. Soil Biol. Biochem. 33: 1769-1776. https://doi.org/10.1016/S0038-0717(01)00102-X
  45. Wei, Q. F., R. R. Mather, and A. F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334. https://doi.org/10.1016/j.biortech.2004.04.005
  46. Wu, S.C., K. C. Cheung, Y. M. Luo, and M. H. Wong. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 140: 124-35. https://doi.org/10.1016/j.envpol.2005.06.023
  47. Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
  48. Zukauskaite, A., V. Jakubauskaite, O. Belous, D. Ambrazaitiene, and Z. Stasiskiene. 2008. Impact of heavy metals on the oil products biodegradation process. Waste Manag. Res. 26: 500-507. https://doi.org/10.1177/0734242X08089838