DOI QR코드

DOI QR Code

Cultivation-Dependent and -Independent Characterization of Microbial Community Producing Polyhydroxyalkanoates from Raw Glycerol

  • Ciesielski, Slawomir (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn) ;
  • Pokoj, Tomasz (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn) ;
  • Klimiuk, Ewa (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn)
  • Received : 2009.09.24
  • Accepted : 2010.01.11
  • Published : 2010.05.28

Abstract

High substrate costs decrease the profitability of polyhydroxyalkanoates (PHAs) production, and thus low-cost carbon substrates coming from agricultural and industrial residuals are tested for the production of these biopolymers. Among them, crude glycerol, formed as a by-product during biodiesel production, seems to be the most promising source of carbon. The object of this study was to characterize the mixed population responsible for the conversion of crude glycerol into PHAs by cultivation-dependent and -independent methods. Enrichment of the microbial community was monitored by applying the Ribosomal Intergenic Spacer Analysis (RISA), and the identification of community members was based on 16S rRNA gene sequencing of cultivable species. Molecular analysis revealed that mixed populations consisted of microorganisms affiliated with four bacterial lineages: ${\alpha}$, ${\gamma}$-Proteobacteria, Actinobacteria, and Bacteroides. Among these, three Pseudomonas strains and Rhodobacter sp. possessed genes coding for polyhydroxyalkanoates synthase. Comparative analysis revealed that most of the microorganisms detected by direct molecular analysis were obtained by the traditional culturing method.

Keywords

References

  1. Anderson, A. J. and E. A. Dawes. 1990. Occurence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472.
  2. Andrade, J. C. and I. Vasconcelos. 2003. Continuous cultures of Clostridium acetobutylicum: Culture stability and low-grade glycerol utilizations. Biotechnol. Lett. 25: 121-125. https://doi.org/10.1023/A:1021911217270
  3. Ashby, R. D., D. K. Y. Solaiman, and T. A. Foglia. 2004. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12: 105-112. https://doi.org/10.1023/B:JOOE.0000038541.54263.d9
  4. Bitton, G. 2005. Wastewater Microbiology, 2nd Ed. Wiley-Liss, New York.
  5. Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-$\beta$- hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 6: 29-37. https://doi.org/10.1007/BF00500854
  6. Brenner, K., L. You, and F. H. Arnold. 2008. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 26: 483-489. https://doi.org/10.1016/j.tibtech.2008.05.004
  7. Ciesielski, S., A. Cydzik-Kwiatkowska, T. Pokoj, and E. Klimiuk. 2006. Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199. https://doi.org/10.1111/j.1365-2672.2006.02973.x
  8. Ciesielski, S., E. Klimiuk, J. Mo ejko, E. Nowakowska, and T. Pokoj. 2009. Changes in microbial community structures during adaptation towards polyhydroxyalkanoates production. Pol. J. Microbiol. 58: 131-139.
  9. Cilia, V., B. Lafay, and R. Christen. 1996. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol. Evol. 13: 451-461. https://doi.org/10.1093/oxfordjournals.molbev.a025606
  10. Comeau, Y., K. J. Hall, and W. K. Oldham. 1988. Determination of poly-$\beta$-hydroxybutyrate and poly-$\beta$-hydroxyvalerate in activated sludge by gas-liquid chromatography. Appl. Environ. Microbiol. 54: 2325-2327.
  11. Dahllof, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13: 213-217. https://doi.org/10.1016/S0958-1669(02)00314-2
  12. da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
  13. Dias, J. M. L., P. C. Lemos, L. S. Serafim, C. Oliveira, M. Eiroa, M. G. E. Albuquerque, A. M. Ramos, R. Oliveira, and M. A. M. Reis. 2006. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product. Macromol. Biosci. 6: 885-906. https://doi.org/10.1002/mabi.200600112
  14. Dolzani, L., E. Tonin, C. Lagatolla, L. Prandin, and C. Monti- Bragadin. 1996. Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J. Clin. Microbiol. 33: 1108-1113.
  15. Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630-4636.
  16. Garcia-Martinez, J., S. G. Acinas, A. I. Anton, and F. Rodriguez- Valera. 1999. Use of the 16S-23S ribosomal genes spacer region in studies of prokaryotic diversity. J. Microbiol. Methods 36: 55-64. https://doi.org/10.1016/S0167-7012(99)00011-1
  17. Gurtler, V. and V. A. Stanisich. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16. https://doi.org/10.1099/13500872-142-1-3
  18. Kadouri, D., E. Jurkevitch, Y. Okon, and S. Castro-Sowinski. 2005. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 31: 55-67. https://doi.org/10.1080/10408410590899228
  19. Kisand, V. and J. Wikner. 2003. Combining culture-dependent and -independent methodologies for estimation of richness of estuarine bacterioplankton consuming river in dissolved organic matter. Appl. Environ. Microbiol. 69: 3607-3616. https://doi.org/10.1128/AEM.69.6.3607-3616.2003
  20. Kleerebezem, R. and M. C. M. van Loosdrecht. 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207-212. https://doi.org/10.1016/j.copbio.2007.05.001
  21. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17: 1244-1245. https://doi.org/10.1093/bioinformatics/17.12.1244
  22. Liu, Q.-M., L. N. Ten, H.-S. Yu, F.-X. Jin, W.-T. Im, and S.-T. Lee. 2008. Emticicia ginsengisoli sp. nov., a species of the family 'Flexibacteraceae' isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 58: 1100-1105. https://doi.org/10.1099/ijs.0.65386-0
  23. Miskin, I. P., P. Farrimond, and I. M. Head. 1999. Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145: 1977-1987. https://doi.org/10.1099/13500872-145-8-1977
  24. Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
  25. Pachauri, N. and B. He. 2006. Value added utilization of crude glycerol from biodiesel production: A survey of current research activities. ASABE Meeting Presentation.
  26. Rehm, B. H. A. and A. Steinbüchel. 2003. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromolec. 25: 3-19.
  27. Reis, M. A. M., L. S. Serafim, P. C. Lemos, A. M. Ramos, F. R. Aguiar, and M. C. M. van Loosdrecht. 2003. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst. Eng. 25: 377-385. https://doi.org/10.1007/s00449-003-0322-4
  28. Romo, D. M. R., M. V. Grosso, N. C. M. Solano, and D. M. Castano. 2007. A most effective method for selecting a broad range of short and medium-chain-length polyhydroxyalkanoates producing microorganisms. Electron. J. Biotechnol. 10: 348-357.
  29. Saha, P. and T. Chakrabarti. 2006. Emticicia oligotrophica gen. nov., sp. nov., a new member of the family 'Flexibacteraceae', phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 56: 991-995. https://doi.org/10.1099/ijs.0.64086-0
  30. Sanz, J. L. and T. Köchling. 2007. Molecular biology techniques used in wastewater treatment: An overview. Process Biochem. 42: 119-133. https://doi.org/10.1016/j.procbio.2006.10.003
  31. Serafim, L. S., P. C. Lemos, R. Oliveira, and M. A. M. Reis. 2004. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 87: 145-160. https://doi.org/10.1002/bit.20085
  32. Serafim, L. S., P. C. Lemos, M. G. E. Albuquerque, and M. A. M. Reis. 2008. Strategies for PHA production by mixed cultures and renewable waste materials. Appl. Microbiol. Biotechnol. 81: 615-628. https://doi.org/10.1007/s00253-008-1757-y
  33. Schippers, A., K. Bosecker, C. Spröer, and P. Schumann. 2005. Microbacterium oleovorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Grampositive bacteria. Int. J. Syst. Evol. Microbiol. 55: 655-660. https://doi.org/10.1099/ijs.0.63305-0
  34. Shannon, C. E. and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
  35. Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2000. Rapid identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol.Biotechnol. 53: 690-694. https://doi.org/10.1007/s002530000332
  36. Stackebrandt, E. and B. M. Goebel. 1994. A place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
  37. Steinbuchel, A. and H. G. Schlegel. 1991. Physiology and molecular genetics of poly ($\beta$-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol. Microbiol. 5: 535-542. https://doi.org/10.1111/j.1365-2958.1991.tb00725.x
  38. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  39. Yazdani, S. S. and R. Gonzalez. 2007. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18: 213-219. https://doi.org/10.1016/j.copbio.2007.05.002

Cited by

  1. Waste rapeseed oil as a substrate for medium‐chain‐length polyhydroxyalkanoates production vol.113, pp.12, 2010, https://doi.org/10.1002/ejlt.201100148
  2. Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate vol.27, pp.7, 2010, https://doi.org/10.1007/s11274-010-0605-2
  3. Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel byproduct as a substrate vol.27, pp.7, 2010, https://doi.org/10.1007/s11274-010-0605-2
  4. Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source vol.22, pp.3, 2010, https://doi.org/10.4014/jmb.1106.06039
  5. Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers vol.22, pp.8, 2010, https://doi.org/10.4014/jmb.1111.11040
  6. Industrial biotechnology of Pseudomonas putida and related species vol.93, pp.6, 2010, https://doi.org/10.1007/s00253-012-3928-0
  7. Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida vol.6, pp.5, 2013, https://doi.org/10.1111/1751-7915.12040
  8. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability vol.5, pp.1, 2010, https://doi.org/10.1007/s13205-014-0198-9
  9. Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production vol.15, pp.4, 2016, https://doi.org/10.1007/s11157-016-9411-0
  10. Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production vol.44, pp.8, 2017, https://doi.org/10.1007/s10295-017-1951-y
  11. Production of polyhydroxyalkanoates and enrichment of associated microbes in bioreactors fed with rice winery wastewater at various organic loading rates vol.292, pp.None, 2010, https://doi.org/10.1016/j.biortech.2019.121978
  12. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? vol.13, pp.11, 2010, https://doi.org/10.3390/polym13111731
  13. Factors Influencing the Fungal Diversity on Audio-Visual Materials vol.9, pp.12, 2021, https://doi.org/10.3390/microorganisms9122497
  14. Wood Juice Valorization through Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Bacillus sp. G8_19 vol.9, pp.50, 2010, https://doi.org/10.1021/acssuschemeng.1c06856