DOI QR코드

DOI QR Code

Biosynthesis of Plant-Specific Flavones and Flavonols in Streptomyces venezuelae

  • Park, Sung-Ryeol (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Paik, Ji-Hye (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Ahn, Mi-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Je-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Yoon, Yeo-Joon (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.05.27
  • Accepted : 2010.06.08
  • Published : 2010.09.28

Abstract

Recently, recombinant Streptomyces venezuelae has been established as a heterologous host for microbial production of flavanones and stilbenes, a class of plant-specific polyketides. In the present work, we expanded the applicability of the S. venezuelae system to the production of more diverse plant polyketides including flavones and flavonols. A plasmid with the synthetic codon-optimized flavone synthase I gene from Petroselium crispum was introduced to S. venezuelae DHS2001 bearing a deletion of the native pikromycin polyketide synthase gene, and the resulting strain generated flavones from exogenously fed flavanones. In addition, a recombinant S. venezuelae mutant expressing a codon-optimized flavanone $3{\beta}$-hydroxylase gene from Citrus siensis and a flavonol synthase gene from Citrus unshius also successfully produced flavonols.

Keywords

References

  1. Harborne, J. B. and C. A. Willams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  2. Hoover, D. M. and J. Lubkowski. 2002. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30: e43. https://doi.org/10.1093/nar/30.10.e43
  3. Jung, W. S., S. K. Lee, J. S. J. Hong, S. R. Park, S. J. Jeong, A. R. Han, et al. 2006. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 72: 763-769. https://doi.org/10.1007/s00253-006-0318-5
  4. Kieser, T. M., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hoopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
  5. Kim, B. G., B. R. Jung, Y. Lee, H. G. Hur, Y. Lim, and J. H. Ahn. 2006. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J. Agric. Food Chem. 54: 823-828. https://doi.org/10.1021/jf0522715
  6. Leonard, E., Y. Yan, Z. L. Fowler, Z. Li, C. G. Lim, K. H. Lim, and M. A. Koffas. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257-265. https://doi.org/10.1021/mp7001472
  7. Miyahisa, I., N. Funa, Y. Ohnishi, S. Martens, T. Moriguchi, and S. Horinouchi. 2006. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol. 71: 53-58. https://doi.org/10.1007/s00253-005-0116-5
  8. Miyahisa, I., M. Kaneko, N. Funa, H. Kawasaki, H. Kojima, and S. Horinouchi. 2005. Efficient production of (2S)-flavanones by Escherichia coli. Appl. Microbiol. Biotechnol. 68: 498-504. https://doi.org/10.1007/s00253-005-1916-3
  9. Park, S. R., J. A. Yoon, J. H. Paik, J. W. Park, W. S. Jung, Y. H. Ban, et al. 2009. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J. Biotechnol. 141: 181-188. https://doi.org/10.1016/j.jbiotec.2009.03.013
  10. Park, S. R., J. W. Park, W. S. Jung, A. R. Han, Y. H. Ban, E. J. Kim, J. K. Sohng, S. J. Sim, and Y. J. Yoon. 2008. Heterologous production of epothilone B and D in Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 81: 109-117. https://doi.org/10.1007/s00253-008-1674-0
  11. Tropf, S., B. Karcher, G. Schroder, and J. Schroder. 1995. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase). J. Biol. Chem. 270: 7922-7928. https://doi.org/10.1074/jbc.270.14.7922
  12. Weisshaar, B. and G. I. Jenkins. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251-257. https://doi.org/10.1016/S1369-5266(98)80113-1
  13. Yao, L. H., Y. M. Jiang, J. Shi, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 59: 113-122. https://doi.org/10.1007/s11130-004-0049-7

Cited by

  1. Flavonoids: biosynthesis, biological functions, and biotechnological applications vol.3, pp.None, 2010, https://doi.org/10.3389/fpls.2012.00222
  2. The role of transcription in heterologous expression of polyketides in bacterial hosts vol.30, pp.11, 2013, https://doi.org/10.1039/c3np70060g
  3. Microbial biosynthesis of medicinally important plant secondary metabolites vol.31, pp.11, 2010, https://doi.org/10.1039/c4np00057a
  4. Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery vol.38, pp.9, 2010, https://doi.org/10.1007/s12272-015-0638-z
  5. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology vol.34, pp.5, 2016, https://doi.org/10.1016/j.biotechadv.2016.02.012
  6. De Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and Production Improvement by Feeding and Spore Conditioning vol.8, pp.None, 2010, https://doi.org/10.3389/fmicb.2017.00921
  7. Challenges in the microbial production of flavonoids vol.17, pp.2, 2010, https://doi.org/10.1007/s11101-017-9515-3
  8. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0207278
  9. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides vol.14, pp.1, 2010, https://doi.org/10.1002/biot.201700463
  10. Proteomic analysis of the potential mechanism of fading of aroma‐related esters in “Nanguo” pears after long‐term refrigeration vol.43, pp.4, 2010, https://doi.org/10.1111/jfbc.12771
  11. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids vol.46, pp.6, 2010, https://doi.org/10.1007/s11033-019-05066-1
  12. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity from Ornithogalum caudatum Jacq vol.19, pp.None, 2019, https://doi.org/10.1186/s12870-019-1787-x
  13. Streptomyces as Microbial Chassis for Heterologous Protein Expression vol.9, pp.None, 2010, https://doi.org/10.3389/fbioe.2021.804295
  14. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3‐hydroxylase with 2‐hydroxylase side activity vol.14, pp.5, 2010, https://doi.org/10.1111/1751-7915.13874
  15. Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain vol.7, pp.3, 2010, https://doi.org/10.3390/fermentation7030161