DOI QR코드

DOI QR Code

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola

  • Shin, Keum (Department of Forest Products, Kookmin University) ;
  • Jeya, Marimuthu (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Yeong-Suk (Department of Forest Products, Kookmin University)
  • Received : 2010.03.18
  • Accepted : 2010.06.23
  • Published : 2010.10.28

Abstract

An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.

Keywords

References

  1. Baldrian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  2. Baraznenok, V. A., E. G. Becker, N. V. Ankudimova, and N. N. Okunev. 1999. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb. Technol. 25: 651-659. https://doi.org/10.1016/S0141-0229(99)00091-5
  3. Bhat, M. K. and G. P. Hazlewood. 2001. Enzymology and other characteristics of cellulases and xylanases, pp. 11-57. In M. Bedford and G. Partridge (eds.). Enzymes in Farm Animal Nutrition. CAB International.
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Bruins, M. E., A. E. Janssen, and R. M. Boom. 2001. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186 https://doi.org/10.1385/ABAB:90:2:155
  6. Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari. 1994. Application of xylanases in the pulp and paper industry. Bioresource Technol. 50: 65-72. https://doi.org/10.1016/0960-8524(94)90222-4
  7. Cheng, H. L., C. Y. Tsai, H. J. Chen, S. S. Yang, and Y. C. Chen. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU- 88. Appl. Microbiol. Biotechnol. 82: 681-689. https://doi.org/10.1007/s00253-008-1803-9
  8. Collins, T., C. Gerday, and G. Feller. 2005. Xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  9. Curotto, E., M. Concha, V. Campos, A. M. Milagres, and N. Duran. 1994. Production of extracellular xylanases by Penicillium janthinellum. Effect of selected growth conditions. Appl. Biochem. Biotechnol. 48: 107-116. https://doi.org/10.1007/BF02796165
  10. de Vries, R. P. and J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
  11. Faulet, B. M., S. Niamke, J. T. Gonnety, and L. P. Kouamé. 2006. Purification and biochemical properties of a new thermostable xylanase from symbiotic fungus, Termitomyces sp. African J. Biotechnol. 5: 273-282.
  12. Fujimoto, H., T. Ooi, S. L. Wang, T. Takizawa, H. Hidaka, S. Murao, and M. Arai. 1995. Purification and properties of three xylanases from Aspergillus aculeatus. Biosci. Biotech. Biochem. 59: 538-540. https://doi.org/10.1271/bbb.59.538
  13. Fujimoto, Z., S. Kaneko, A. Kuno, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279: 9606- 9614. https://doi.org/10.1074/jbc.M312293200
  14. He, J., B. Yu, K. Zhang, X. Ding, and D. Chen. 2009. Expression of endo-1,$4-\beta-xylanase $ from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol. 9: 56. https://doi.org/10.1186/1472-6750-9-56
  15. Henrissat, B. and A. Bairoch. 1996. Updating the sequencebased classification of glycosyl hydrolases. J. Biochem. 316: 695-696. https://doi.org/10.1042/bj3160695
  16. Ito, S., A. Kuno, R. Suzuki, S. Kaneko, Y. Kawabana, I. Kusakabe, and T. Hasegawa. 2004. Rational affinity purification of native family 10 xylanase. J. Biotechnol. 110: 137-142. https://doi.org/10.1016/j.jbiotec.2004.01.014
  17. Jenkins, E. and A. V. Manohar. 1995. Chiral perturbation theory for vector mesons. Phys. Rev. Lett. 75: 2272-2275. https://doi.org/10.1103/PhysRevLett.75.2272
  18. Katapodis, P., W. Nerinckx, M. Claeyssens, and P. Christakopoulos. 2006. Purification and characterization of a thermostable intracellular $\beta-xylosidase $ from the thermophilic fungus Sporotrichum thermophile. Process Biochem. 41: 2402-2409. https://doi.org/10.1016/j.procbio.2006.06.021
  19. Kerem, Z., K. Jensen, and K. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54. https://doi.org/10.1016/S0014-5793(99)00180-5
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  21. Lee, J. W., K. S. Gwak, M. J. Park, D. H. Choi, M. Kown, and I. G. Choi. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol. 45: 485-491.
  22. Lee, J. W., J. Y. Park, M. Kwon, and I. G. Choi. 2009. Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J. Biosci. Bioeng. 107: 33-37. https://doi.org/10.1016/j.jbiosc.2008.09.006
  23. Lucena-Neto, A. S. and E. X. F. Filho. 2004. Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Brazilian J. Microbiol. 35: 86-90.
  24. Maheshwari, R., G. Bharadwaj, and M. Bhat. 2000. Thermophilic fungi: Their physiology and enzymes. J. Microbiol. Molec. Biol. Rev. 64: 461-488. https://doi.org/10.1128/MMBR.64.3.461-488.2000
  25. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Morris, D. D., M. D. Gibbs, C. W. J. Chin, M. H. Koh, K. K. Y. Wong, R. W. Allison, P. J. Nelson, and P. L. Bergquist. 1998. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol. 64: 1759-1765.
  27. Ninawe, S., M. Kapoor, and R. C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258. https://doi.org/10.1016/j.biortech.2007.02.016
  28. Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. M. G. A. Fontes, L. M. A. Ferreira, et al. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605. https://doi.org/10.1074/jbc.M312278200
  29. Polizeli, M. L., A. C.Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Minireview. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
  30. Wakiyama, M., H. Tanaka, K. Yoshihara, S. Hayashi, and K. Ohta. 2008. Purification and properties of family-10 endo-1,$4-\beta- xylanase $ from Penicillium citrinum and structural organization of the encoding gene. J. Biosci. Bioeng. 105: 367-374. https://doi.org/10.1263/jbb.105.367
  31. Wong, K. K. Y. and J. N. Saddler. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413- 435. https://doi.org/10.3109/07388559209114234
  32. Yan, Q. J., L. Wang, Z. Q. Jiang, S. Q. Yang, H. F. Zhu, and L. T. Li. 2009. A xylose-tolerant $\beta-xylosidase $ from Paecilomyces thermophila: Characterization and its co-action with the endogenous xylanase. Bioresource Technol. 99: 5402-5410.
  33. Yu, E. K. C., L. U. L. Tan, M. K.-H. Chan, L. Deschatelets, and J. N. Saddler. 1987. Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 9: 16-24. https://doi.org/10.1016/0141-0229(87)90044-5
  34. Zhou, C., J. Bai, S. Deng, J. Wang, J. Zhu, M. Wu, and W. Wang. 2008. Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour. Technol. 99: 831-838. https://doi.org/10.1016/j.biortech.2007.01.035
  35. Zolotnitsky, G., U. Cogan, N. Adir, V. Solomon, G. Shoham, and Y. Shoham. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. U.S.A. 101: 11275-11280. https://doi.org/10.1073/pnas.0404311101

Cited by

  1. Purification and partial characterisation of a thermostable xylanase from salt-tolerant Thermobifida halotolerans YIM 90462T vol.47, pp.2, 2010, https://doi.org/10.1016/j.procbio.2011.10.032
  2. Production, purification and characterisation of alkali stable xylanase from Cellulosimicrobium sp. MTCC 10645 vol.2, pp.3, 2010, https://doi.org/10.1016/s2221-1691(12)60496-1
  3. Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1 vol.22, pp.7, 2010, https://doi.org/10.4014/jmb.1110.10060
  4. Effect of Different Nutrient Components on Polysaccharide and Biomass Production from Fomitopsis pinicola Karst vol.503, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.503-504.174
  5. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics vol.48, pp.None, 2010, https://doi.org/10.1016/j.soilbio.2012.01.011
  6. Homologous constitutive expression of Xyn III in Trichoderma reesei QM9414 and its characterization vol.59, pp.3, 2010, https://doi.org/10.1007/s12223-013-0288-9
  7. Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production vol.24, pp.4, 2014, https://doi.org/10.4014/jmb.1312.12072
  8. Screening of β‐Glucosidase and β‐Xylosidase Activities in Four Non‐Saccharomyces Yeast Isolates vol.80, pp.8, 2010, https://doi.org/10.1111/1750-3841.12954
  9. Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT vol.74, pp.9, 2010, https://doi.org/10.1007/s00284-017-1286-y
  10. Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars vol.182, pp.2, 2010, https://doi.org/10.1007/s12010-016-2364-5
  11. WOOD-DESTROYING PROPERTIES OF FOMITOPSIS PINICOLA (SW.) P. KARST. FROM MIDDLE SIBERIA vol.2018, pp.1, 2010, https://doi.org/10.14258/jcprm.2018012729
  12. Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach vol.12, pp.4, 2021, https://doi.org/10.1080/21501203.2021.1918277