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요 약

이 논문은 유클리드 기하학과 Circulant Permutation Matrices에서 병렬 구성을 기반으로 하는 Quasi-cyclic Low-density

parity-check (QC-LDPC) 코드의 생성을 위한 하이브리드한 접근방식을 나타낸다. 이 방법으로 생성된 코드는 넓은 둘레

(Large Girth)와 저밀도(Low Density)를 가진 규칙적인 코드로 나타내어진다. 시뮬레이션 결과는 이 코드들이 반복 복호

(Iterative Decoding)를 통해 좋은 성능을 갖는것과 부호화되지 않은 시스템에서 좋은 코딩 이득을 달성하는 것을 보인다.

Abstract

This paper presents a hybrid approach to the construction of quasi-cyclic (QC) low-density parity-check (LDPC) codes

based on parallel bundles in Euclidean geometries and circulant permutation matrices. Codes constructed by this method

are shown to be regular with large girth and low density. Simulation results show that these codes perform very well

with iterative decoding and achieve reasonably large coding gains over uncoded system.

Keywords : QC LDPC codes, Euclidean geometry, lines, points, circulant permutation matrices.

Ⅰ. Introduction

Recently, Euclidean geometries were successfully

used to construct cyclic and quasi-cyclic LDPC codes

for iterative decoding. Methods of construction are

presented [1, 4～6]. LDPC codes constructed by these

methods perform very well over the additive white

Gaussian noise (AWGN), binary random and burst
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erasure channels. The construction of quasicyclic

LDPC codes by combining parallel bundles and

circulants of lines of finite geometries has been

proposed in [1]. Let  be an 

 × 

 

incidence matrix constructed from a -dimensional

Euclidean geometry EG

  . Let , , ... ,  be

a set of  

  ×

 incidence matrices of 

parallel bundles of lines from a -dimensional

Euclidean geometry EG

  . Replacing the

1-entries of  by the incidence matrices , , ... ,

 , and the 0-entries by zero matrices, a QC parity

check matrix  with the girth 6 and density





 

  is obtained. In this hybrid
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construction,  is called the base matrix and the

matrices ’s with  ≤  ≤  are called the

constituent matrices.

In this paper, we describe a new hybrid

construction of QC LDPC codes with: 1) larger girth

and 2) lower density by combining parallel bundles in

Euclidean geometries and circulant permutation

matrices constructed based on the multiplicative

groups of finite fields. Because of the larger girth

and the lower density properties, these codes have

good bit error rate (BER) performance and lower

encoding and decoding complexities. The construction

of the proposed QC LDPC codes consists of three

steps. First, construct a base matrix  based on

parallel bundles in a d-dimension Euclidean geometry.

Second, replace each 1-entry in the mth row and nth

column of  with a positive integer  in the

range [1, q-1] and obtain a shift matrix S. Third, H

is obtained by the combination of vertical and

horizontal expansions of 
   

’s and 0’s as [5～7],

where 
   

is a nonzero element of GF(q). Then

each entry  of S becomes a (q-1)×(q-1)

circulant permutation matrix   
in H and each

0-entry of S becomes a (q-1)×(q-1) zero matrix in

H.   
is also called the constituent matrix.

This paper is organized as follows. Two classes of

base matrices  and  constructed from parallel

bundles are introduced in Section II. In Section III,

we analyze the lower and upper bound of girth of the

proposed QC LDPC codes and present a shift value

assigning algorithm for the design of the shift matrix

S. Two classes of QC LDPC matrices  and 

associated with  and  are constructed in Section

IV. Examples of the proposed codes and their

simulation results are given in Section V. Finally,

Section VI concludes the paper.

Ⅱ. DESIGN OF BASE MATRIX 

In this section, we will introduce two classes of

base matrices constructed from the parallel bundles

of lines and -flats in Euclidean geometries.

1. Class- base matrix 

Let EG  be a d-dimensional Euclidean

geometry over the Galois field GF , where p is a

prime and d, s are two positive integers. This

geometry consists of  points, each point is simply

a d-tuple over GF . A line in EG  consists

of  points. There are         

lines in EG  . Every line has   lines

parallel to it. For any point in EG  , there are

   lines intersecting at this point. Let

GF  be the extension field of GF . GF 

may be regarded as EG   . Let  be a primitive

element of GF . Then {      } form

the  points of EG  . Let  be a nonorigin

point in EG   , then the  points

{}≜{  ∈ }

form a line that pass through the origin in EG   .

Let  and  be two linearly independent points in

EG  . Then the collection of the following points:

{  }≜{    ∈ }

form a line in EG  that passes through the point

. Given a line L and the incidence vector 
=

      
 of L be a binary -tuple with 

=1 if the ith point of EG   is a point on L, and

=0 otherwise. Let the base matrix  be a matrix

whose columns are the incidence vectors  of all the

lines in EG   and whose rows correspond to the

 points in EG   . Then  consists of  rows

and          columns.

Lemma 2.1: The base matrix  has the following

two properties [4]:

1) girth:  = 6;

2) density:    .

A line and the       lines parallel to it are

said to form a parallel bundle. There are °=

     bundles of parallel lines, and each
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parallel bundle consists of  parallel lines. Let

    be a set of   × incidence

matrices of  parallel bundles of lines with  ≤  ≤ .

Then we obtain the following base matrix:

       (1)

2. Class- base matrix 

Now, we extend the concept of lines to planes in

EG  [4]. Let     be  linearly

independent points in EG   , where     . The

 points of the form

  

with ∈ for     , constitute a -flat

that passes through the point . The -flat that

consists of the  points

 

passes through the origin. For any -flat passing

through the origin, there are   -flats in EG

   parallel to it. The number of -flats in EG

   is


  




 

 
.

Given a -flat F and the incidence vector 
 =

    
 

 of F be a binary -tuple with  =

1 if the ith point of EG  is in F, and  = 0

otherwise. Let the base matrix  be a matrix whose

columns are the incidence vectors  of all the 

-flats in EG  and whose rows correspond to the

 points in EG   . Then  consists of  rows

and ∏  
    columns.

If  is not in the -flat {  },

then the -flat {  } contains the

-flat {  }. Let  be a point

not in {  }. Then, the two -flats

{  } and {  } intersect on

-flat {  } which means they

have the  points in {  } as

their common points. Since     , s is a positive

integer and p is a prime, then  ≥  ≥ . Hence,

{  } and {  } have at

least two points in common and therefore the girth 

of  is 4;

Lemma 2.2: The base matrix  has the following

two properties:

1) girth:  = 4;

2) density: r =   .

There are   ∏  
   

bundles of parallel -flats and each parallel bundle

consists of  parallel -flats. Let     be a

set of   × incidence matrices of  parallel

bundles of -flats with  ≤  ≤ . Then we obtain

the following base matrix:

        . (2)

Lemma 2.3: In each submatrix  of ∈{ },

where  ≤  ≤  all the column are incidence vectors

of parallel bundles of lines and -flats, there are no

two ‘1’s in the same row. Therefore there is no cycle

in  .

Ⅲ. DESIGN OF SHIFT MATRIX S 

In this section, we first analyze the girth of the

proposed QC LDPC codes and then introduce one

simple shift value assigning algorithm.

1. Girth of The Proposed QC LDPC codes

After replacing each 1-entry in ∈{ } with a

shift value  , the shift matrix     is

obtained, where   means cyclic shift to the right

by    positions. It is stated in [2] that in a

QC LDPC code, the necessary and sufficient condition

for the existence of the cycle of length 2i is


  

 

  
     

 ≡  mod(q-1)

(3)

where   ,  ≠,  ≠ and   
is

(915)
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표 1. Girth와 Density 비교

Table 1. Girth and Density Comparisons.

표 2. EG(3, 2)에서 Points와 Lines

Table 2. Points and Lines in EG(3, 2).

an entry of S.

Theorem 3.1: [3] If there are  overlaps between a

blockcycle of length 2 and a block-cycle of length

 in a QC LDPC code, then there exists a cycle of

length 2( +  - ). Furthermore, the girth of the

QC LDPC code is at most 2( +  - ).

Theorem 3.2: Using the 6-girth matrix  as the

base matrix, the girth of the QC LDPC code is lower

bounded by 6 and upper bounded by 18. Otherwise, if

using  as the base matrix, the girth of these codes

are lower bounded by 4 and upper bounded by 12.

Proof: Letting  denote the girth of the base

matrix  and  denotes the girth of the QC binary

image of H. It is obvious that the girth of the QC

binary image is at least the same as the girth of the

base matrix  , which means  is lower bounded by

. Let  and  be length of two cycles in  ,

where  ≥ ,  ≥ . Let  be the length of the

overlaps between them. It is clear that the length of

block-cycle corresponding to the non-overlapped part

of the two cycles in  is also at least , which

means

    ≥ 

   ≥  . (4)

표 3. EG(3, 2)에서 Points와 2-FLATS

Table 3. Points and 2-FLATS in EG(3, 2).

According to Theorem 3.1 and equation (3), we have

   ≥     

    , (5)

which means  is upper bounded by  .

Since  ≥ ,  ≥  and

       

    

we have

    ≤  ≤     

 ≤  ≤      (6)

The proof is completed.

2. Shift Value Assigning Algorithm

The shift value assigning algorithm in the

following guarantees the girth    for the proposed

QC LDPC codes.

Step 1: Initially, all the shift values (positions of

1-entries in ) in the shift matrix S are

undetermined.

Step 2: We can randomly assign positive integers

in the range [1, q-1] for shift values in  .

Step 3: Go to the next undetermined column.

(916)
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Assign the positive integer in the range [1, q-1] for

each of the shift values one by one in this column. If

the assigned shift value  forms block-cycles of

length shorter than  with already existing shift

values, we need to check whether the positive

integers of the shift values on these block-cycles

violate the condition (3). If condition (3) is met, we

have to assign another positive integer for that shift

value . This process is repeated until condition

(3) is not met for all the shift values in this column.

Go to the step 4.

Step 4: Stop if all the shift values in S are

assigned, otherwise go to step 3.

According to lemma 2.3, there is no cycles in each

 of  , where  ≤  ≤ . Then it is clear that there

is no block-cycle in each   of S, which lower the

complexity of the block-cycle searching in S. In

general, for a small q, it is not easy to check

whether the existence of positive integers for shift

values which guarantee the QC LDPC codes to have

a large girth. Moreover, finding positive integers for

shift values seems even more difficult. But, certainly

such positive integers exist if we allow a sufficient

large q.

Ⅳ. CONSTRUCTION OF QC-LDPC CODES 

Consider a Galois field GF(q), where q is a power

of a prime. Let  be a primitive element of GF(q).

For each nonzero element  with  ≤  ≤ , we

form a (q-1)-tuple over GF(2), =     ,

whose components correspond to the q-1 nonzero

elements of GF(q), where the ith component   

and all the other q-2 components are equal to 0. The

0 element of GF(q) is defined as the all-zero

(q-1)-tuple,     . This (q-1)-tuple is referred

as the location vector of the field element . For

each entry   of a M×N shift matrix S, we

expand it vertically into a (q-1)×1 matrix  

over GF(q) by multiplying 
   

with , , ... ,

  as follows:

     













     


     






    

 

, (7)

where 
   

is a nonzero element of GF(q). For each

0-entry in the m-th row and n-th column of the M×N

shift matrix S, we expand it into a (q-1)×1 zero matrix

 . This vertical expansion of a row into (q-1) rows

is referred to as the multiplicative (q-1)-fold vertical

expansion. Replacing each entry of   by its location

vector. We obtain a (q-1)×(q-1) matrix   over

GF(2). The replacement is referred to as the

multiplicative (q-1)-fold horizontal expansion. Then we

obtain the following M×N array of (q-1)×(q-1)

circulant permutation and/or zero matrix:

 











         

  




  




   

         

. (8)

If the entry in the m-th row and n-th column of S is a

nonzero entry ,  is a (q-1)×(q-1) circulant

permutation matrices. However, If the entry in the m-th

row and n-th column of S is a 0-entry,  is a (q-1)

×(q-1) zero matrix. The null space over GF(2) of H

gives a QC LDPC code C over GF(2). Associated with 

and , the QC LDPC matrices H also have two classes,

 and .

Lemma 4.1: The QC LDPC matrix  has the

following two properties:

1) girth:  ≤  ≤ ;

2) density:    .

Lemma 4.2: The QC LDPC matrix  has the

following two properties:

1) girth:  ≤  ≤ ;

2) density:    .

Note that if we allow a sufficient large q, then the

short girth (i.e. 4,6) can be easily prevented and also

when q is large, the densities of  and  are lower

than the density of the hybrid constructed codes in [1].
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Let EG 

  and EG 

  denote the Euclidean

geometries from which the base matrices and the

constituent matrices in Example 8[1] are constructed,

respectively. To construct the QC LDPC codes which

have the same code word length and code rate as the

codes constructed in Example 8[1], we carefully choose

the parameters q,  and the Euclidean geometries EG

   from which  and  are constructed. With the

proposed hybrid approach, three QC LDPC codes are

constructed. The maximum achievable girth and the

density of these three codes and the codes in Example

8
[1]

are compared in Table I. From this table we can see

that our codes have larger or equal girth and lower

density.

Ⅴ. SIMULATION RESULTS

In the following, we give two examples of the

proposed QC LDPC codes. In computing the error

performance, in terms of the BER, with iterative

decoding using SPA, we assume binary phase-shift

keying (BPSK) transmission over an additive white

Gaussian noise (AWGN) channel.

Example 1: Consider the Euclidean geometry EG(3,

2) over GF(2), the points and the lines are given in

Table Ⅱ[4]. Based on the points and lines, we

construct a 8 × 28 base matrix    . With the

shift values assigning algorithm and the parameter q

= 128, shift value matrices S’s for girth 6, 8, 10, 12

are constructed, respectively.  is obtained by

vertical and horizontal expansions of the entries of

. Fig.1 shows the BER performance of their

corresponding QC LDPC codes. For a    a

coding gain of more than 5.5dB is achieved over

uncoded BPSK system when the girth of the codes is

12.

Example 2: Consider the geometry EG(3, 2) over

GF(2). There are fourteen 2-flats given in Table Ⅲ
[4]. Based on the points and 2-flats, we construct a 8

× 14 base matrix     . With the shift values

assigning algorithm and the parameter q = 256, shift

그림 1. 예제 1에서 QC LDPC의 성능

Fig. 1. Performance of QC LDPC codes in Example 1.

value matrices S’s for girth 6, 8 are constructed,

respectively.  is obtained by vertical and

horizontal expansions of the entries of  . Fig.2

shows the BER performance of their corresponding

QC LDPC codes. For a   , a coding gain of

more than 7.5dB is achieved over uncoded BPSK

system when the girth of the codes is 8.

F(2), the points and the lines are given in Table Ⅱ
[4]

. Based on the points and lines, we construct a 8 £

28 base matrix  (± = 7). With the shift values

assigning algorithm and the parameter q = 128, shift

value matrices S’s for girth 6, 8, 10, 12 are

constructed, respectively.  is obtained by vertical

and horizontal expansions of the entries of  . Fig.1

shows the BER performance of their corresponding

QC LDPC codes. For a BER = 10¡6 a coding gain

of more than 5.5dB is achieved over uncoded BPSK

system when the girth of the codes is 12.

Example 2: Consider the geometry EG(3; 2) over

GF(2). There are fourteen 2-flats given in Table Ⅲ
[4]

. Based on the points and 2-flats, we construct a 8

£ 14 base matrix  (± = 7). With the shift values

assigning algorithm and the parameter q = 256, shift

value matrices S’s for girth 6, 8 are constructed,

respectively.  is obtained by vertical and horizontal

expansions of the entries of  . Fig.2 shows the

BER performance of their corresponding QC LDPC

(918)
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그림 2. 예제 2에서 QC LDPC의 성능

Fig. 2. Performance of QC LDPC codes in Example 2.

codes. For a BER = 10¡6, a coding gain of more

than 7.5dB is achieved over uncoded BPSK system

when the girth of the codes is 8.

Ⅵ. CONCLUSION 

Based on the parallel bundle of lines and μ-flats in

EG    , we construct the base matrices  ’s with

girth 6 and 4, respectively. And based on the

multiplicative groups of finite fields, we constructed

the circulant permutation matrices. With these base

matrices and the circulant permutation matrices, a

hybrid approach to the construction of the QC LDPC

codes has been presented. Codes of this class have

larger girth and lower density than the hybrid

constructed codes in [1], which means that our codes

have good performance and lower coding complexity.
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