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Abstract

This paper presents a hybrid approach to the construction of quasi—cyclic (QC) low—density parity—check (LDPC) codes
based on parallel bundles in Euclidean geometries and circulant permutation matrices. Codes constructed by this method
are shown to be regular with large girth and low density. Simulation results show that these codes perform very well
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with iterative decoding and achieve reasonably large coding gains over uncoded system.

Keywords :

I. Introduction

Recently, Euclidean geometries were successfully
used to construct cyclic and quasi-cyclic LDPC codes
for iterative decoding. Methods of construction are
presented [1,4~6]. LDPC codes constructed by these
methods perform very well over the additive white

Gaussian noise (AWGN), binary random and burst
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QC LDPC codes, Euclidean geometry, lines, points, circulant permutation matrices.

erasure channels. The construction of quasicyclic
LDPC codes by combining parallel bundles and

circulants of lines of finite geometries has been
—1)x

incidence matrix constructed from a d,-dimensional

( dys,

proposed in [1]. Let B be an (p'li -1)

Euclidean geometry EG(d,.p}"). Let P, P, ...,

dy—1)s, dys
a set of 7 pitVmsphe

P_be
incidence matrices of 7
parallel bundles of lines from a d,~dimensional

Euclidean  geometry EG(d,.p,’). Replacing the

1-entries of B by the incidence matrices P, P, ... ,
P, and the O-entries by zero matrices, a QC parity
check matrix A with the girth 6 and density

PP —1)p " is obtained. In this  hybrid
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construction, B is called the base matrix and the

matrices P’s with 1<j<r are called the

constituent matrices.
In this paper,

construction of QC LDPC codes with: 1) larger girth

and 2) lower density by combining parallel bundles in

we describe a new hybrid

Euclidean geometries and circulant permutation
matrices constructed based on the multiplicative
groups of finite fields. Because of the larger girth
and the lower density properties, these codes have
good bit error rate (BER) performance and lower
encoding and decoding complexities. The construction
of the proposed QC LDPC codes consists of three
steps. First, construct a base matrix B based on
parallel bundles in a d-dimension Euclidean geometry.
Second, replace each 1-entry in the mth row and nth
mn) 1D the
range [1, g-1] and obtain a shift matrix S. Third, H

is obtained by the combination of vertical and

column of B with a positive integer o

=1 i 4 nonzero element of GF(q). Then

(g-Dx(g-1)

m H and each

n)

where a

each entry o of S becomes a

myn)
circulant permutation matrix P,
O-entry of S becomes a (q-1)x(g-1) zero matrix in

H. P, is also called the constituent matrix.

This paper is organized as follows. Two classes of
base matrices B, and B, constructed from parallel
bundles are introduced in Section II. In Section III,
we analyze the lower and upper bound of girth of the
proposed QC LDPC codes and present a shift value
assigning algorithm for the design of the shift matrix
S. Two classes of QC LDPC matrices H, and Hj
associated with B, and B,; are constructed in Section
IV. Examples of the proposed codes and their
simulation results are given in Section V. Finally,

Section VI concludes the paper.
II. DESIGN OF BASE MATRIX B

In this section, we will introduce two classes of

base matrices constructed from the parallel bundles
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of lines and p—flats in Euclidean geometries.

1. Class—1 base matrix B,
Let EG(d,p*)
geometry over the Galois field GF(p®), where p is a
This

points, each point is simply

be a d-dimensional Euclidean

prime and d, s are two positive integers.

geometry consists of p®
a d-tuple over GF(p®). A line in EG(d,p®) consists
0 1)/ 1)

d—1)s

pds

Every line has p'

of p° points. There are p
lines in EG(d, p*).
parallel to it. For any point in EG(d,p®), there are

—1 lines

(p*—1)/(p*—1) lines intersecting at this point. Let
GF(p*) be the extension field of GF(p*). GF(p®)
may be regarded as EG(d,p®). Let a be a primitive
element of GF(p™). Then {0, a’, o', ...

the p® points of EG(d,p*). Let o’ be a nonorigin

ds
;o 2} form

point in EG(d, p*), then the p® points
(B} =B’ : p € GF(p*)}

form a line that pass through the origin in EG(d, p*).
Let o' and o’ be two linearly independent points in

EG(d,p*). Then the collection of the following points:
{a'+ Bt ={a'+ 80’ : B € GF(p*)}

form a line in EG(d, p*) that passes through the point

o'. Given a line L and the incidence vector v;=
(vg, v 5 - ,vpds_l) of L be a binary p*-tuple with v,

=1 if the ith point of EG(d,p®) is a point on L, and
v;=0 otherwise. Let the base matrix B, be a matrix
whose columns are the incidence vectors v, of all the
lines in EG(d, p*) and whose rows correspond to the

% rows

p® points in EG(d,p*). Then B, consists of p
and '~V (p* —1)/(p* — 1) columns.
Lemma 2.1: The base matrix B, has the following
two properties [4]:
1) girth: g, = 6;
2) density: r=1/p" s,
A line and the p'“~ )" —1 lines parallel to it are
sald to form a parallel bundle. There are ~°=

(p™ —1)/(p* —1) bundles of parallel lines, and each
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4=1s parallel lines. Let

(d—1)s

parallel bundle consists of p'
bys bys -1y

matrices of § parallel bundles of lines with 1 < § <.

be a set of § p®xp incidence

Then we obtain the following base matrix:

By =1b;, by, ... bg ). (1)
2. Class—1 base matrix By,
Now, we extend the concept of lines to planes in
EG(d, p’s)w. Let 9or 91> 29, be

independent points in EG(d, p*), where 1< u<d. The

u+1  linearly

p* points of the form
9o T 5191 T 8,9,

with B,€ GF(p®) for 1<i<pu, constitute a p—flat
that passes through the point g,. The p—flat that

consists of the p"* points
Brg1 T "-Bugﬂ

passes through the origin. For any p—flat passing
through the origin, there are p“~** —1 p—flats in EG
(d,p®) parallel to it. The number of p-flats in EG
(d,p*) is

p(d *;I)SILi[ p

j:lp(;A*i+1)s_1 .

(d—i+1)s —1

Given a p-flat F and the incidence vector vy =

(vg 015500 ) of F be a binary e
1 if the ith point of EG(d,p*) is in F, and v, = 0

otherwise. Let the base matrix B, be a matrix whose

~tuple with v, =

columns are the incidence vectors v, of all the p
—flats in EG(d,p*) and whose rows correspond to the
p* points in EG(d, p*). Then B, consists of p™ rows
and p(d*;/,)sl—[f,:1(p(d*i+1)s _ 1)/(1,)(/1,*7?4»1)8 _ 1) COlumnS.

If g, is not in the (n—1)-flat {g,+8,9, +--B8,19,-1),
then the p-flat {g,+3,9,+-8,9, the
(p—1)-flat {g,+pByg, +--B,-19,-1). Let b, be a point
not in {g,+Bg, +--B,9,). Then the two p-flats

} contains

{90+ B9, +--B,9,) and {g,+ B9, +..8,b,} intersect on
(p—1)-flat {g,+B,9, + B, 19, )} which means they

u—1)s

have the p' points in {g,+ B, +..8, 19, .} as
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their common points. Since 1<p<d, s is a positive
integer and p is a prime, then p" " > p > 2. Hence,
{go+89,+--B,9,) and {g,+pBg, +..6,b,} have at
least two points in common and therefore the girth g,
of B, is 4

Lemma 2.2: The base matrix B, has the following
two properties:
1) girth: g, = 4;
2) density: r = 1/(p" ).

There = Hﬁ_t:1(p(d7i+1)s71)/(p(}1*i+1)s71)

bundles of parallel p—flats and each parallel bundle

are

consists of p' " parallel p—flats. Let by, b,, ..,bs be a
(d*/l,)s

ds

set of § p®xp incidence matrices of § parallel
bundles of p—flats with 1 <é<~. Then we obtain

the following base matrix:

By = [blv by, -, bé]. (2)

Lemma 2.3: In each submatrix b, of BE{B,,B,},
where 1 < j <6 all the column are incidence vectors
of parallel bundles of lines and p—flats, there are no
two ‘I's in the same row. Therefore there is no cycle

in b,
II. DESIGN OF SHIFT MATRIX S

In this section, we first analyze the girth of the
proposed QC LDPC codes and then introduce one
simple shift value assigning algorithm.

1. Girth of The Proposed QC LDPC codes
After replacing each l-entry in BE{B,,B,} with a

shift value a the shift matrix S=[5,S,,....5;] is

m,n)s

obtained, where a means cyclic shift to the right

m,n)
by (a(,. . —1) positions. It is stated in [2] that in a
QC LDPC code, the necessary and sufficient condition

for the existence of the cycle of length 2i is

i—1

Z ((a(mk, ng) 1)_ (a(mkﬂ, n,) 1)) = 0 mod(q-1)
k=0
3
Where m; =mg, my 7 My, Ny 7 LS and a(mk_,nk) iS
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i* 1. Girthet Density H| !
Table 1. Girth and Density Comparisons.
| | EG(d1,p]") | EG(d2,p3?) | EG(d,p") | 8 | q | Codeword length | Maximum achievable girth | Density |
Codes in Example 8 [1] EG(2,5) EG(3,2%) 12288 6 0.003255
Codes from Hy EG(6,2Y) | 16 | 25 12288 8 0.00130
Codes from H; EGHE2) [ 16 | 49 12288 10 0.00130
Codes from Hy/(u = 2) EG(6,2Y) | 32 | 25 12288 5 0.00260

E 2 EGE 20lM Points@t Lines
Table 2. Points and Lines in EG(3, 2).

¥ 3. EGQ, 20lM Pointset 2-FLATS
Table 3. Points and 2-FLATS in EG(S, 2).

(a) Points in EG(3,2) (a) Points in EG(3.2)

0 = (000), g = (001), ay = (010), v2 = (011), 0 = (000), g = (001), vy = (010), 2 = (011),
a3 = (100), aq = (101), a5 = (110), g = (111). asz = (100), aq = (101), a5 = (110), ag = (111).
(b) Lines in EG(3,2) (b) p-flats in EG(3,2)

{0, a0} {an, 1} {ar, a3} {a2, a6} {0, g, vi, ez } {as, aq, a5, a6}

{0, a1} {ap, a2} {a1, 4} {az,aq} {0,a1,a3,a5} {0, a2, a, a6}

{0, a2} {ap, 3} {1, a5} {as, a5} {0, 1, g, v } {0, a2, ag, a5}
{0,()‘3} {ao,a4} {al,ag} {(13,(16} {0,(12,(14)(15} {C‘E[],(ll,ag,(lﬁ}
{0,(14} {ao,a5} {ag,ag} {114,05} {0,(1[),(13,04} {Qg,ag,a4,ag}

{0, a5} {ap, a6} {az, a} {4, a6} {0, a0, a5, a6} {1, a4, 05, a6 }

{0, a6} {a1, 0} {ao, a5} {as, ac} {0, v1, cva, a6 } {ova, a3, ag, vt }
an entry of S. According to Theorem 3.1 and equation (3), we have

Theorem 3.1: [3] If there are u overlaps between a
blockeycle of length 2i and a block-cycle of length
2k in a QC LDPC code, then there exists a cycle of
length 2(21 + 2k - w). Furthermore, the girth of the
QC LDPC code is at most 2(21 + 2k — w).

Theorem 3.2: Using the 6-girth matrix B; as the
base matrix, the girth of the QC LDPC code is lower
bounded by 6 and upper bounded by 18. Otherwise, if
using B,; as the base matrix, the girth of these codes
are lower bounded by 4 and upper bounded by 12.

Proof: Letting ¢, denote the girth of the base
matrix B and g denotes the girth of the QC binary
image of H. It is obvious that the girth of the QC
binary image is at least the same as the girth of the
base matrix B, which means ¢ is lower bounded by
g, Let 20 and 2k be length of two cycles in B,
where 20 > g, 2k=g, Let u be the length of the
overlaps between them. It is clear that the length of
block-cycle corresponding to the non-overlapped part
of the two cycles in B is also at least g,, which

means

@Ql—u)+ 2k—u) > gy
H—k—gb/Q > u,

202042k —u) = 22+ 2k—1—k+g,/2)

=20+ 2k+g, (5)

which means ¢ is upper bounded by 2I+2k-+g,.
Since 21 = g,, 2k = g, and

|

we have

6, B=B,;
4, B=B,,

_[6=g<18, B=DBy; ©
97 la<g=<12, B=B,.
The proof is completed.
2. Shift Value Assigning Algorithm
The shift value assigning algorithm in the

following guarantees the girth g =2i for the proposed
QC LDPC codes.

Step 1: Initially, all the shift values (positions of
in B) in the

undetermined.

1-entries shift matrix S are

Step 2: We can randomly assign positive integers
in the range [1, q-1] for shift values in S,.

Step 31 Go to the next undetermined column.

(916)
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Assign the positive integer in the range [1, q-1] for
each of the shift values one by one in this column. If
the assigned shift value «,,, forms block-cycles of
length shorter than 2 with already existing shift
values, we need to check whether the positive
integers of the shift values on these block-cycles
violate the condition (3). If condition (3) is met, we
have to assign another positive integer for that shift

value ¢ This process is repeated until condition

)
(3) is not met for all the shift values in this column.
Go to the step 4.

Step 4: Stop if all the shift values in S are
assigned, otherwise go to step 3.

According to lemma 2.3, there is no cycles in each
b, of B, where 1< j<4. Then it is clear that there
is no block-cycle in each §; of S, which lower the
complexity of the block-cycle searching in S. In
general, for a small g, it is not easy to check
whether the existence of positive integers for shift
values which guarantee the QC LDPC codes to have
a large girth. Moreover, finding positive integers for
shift values seems even more difficult. But, certainly
such positive integers exist if we allow a sufficient

large q.
IV. CONSTRUCTION OF QC—-LDPC CODES

Consider a Galois field GF(q), where q is a power
of a prime. Let o be a primitive element of GF(q).
For each nonzero element o' with 0 <i<¢—2, we
form a (g-1)-tuple over GF(2), z(a')=(zy 2y 22, 5),
whose components correspond to the g-1 nonzero
elements of GF(q), where the ith component z, =1
and all the other q—2 components are equal to 0. The
0 element of GF(q)
(g-1)-tuple, (0,0,...,0). This (g-1)-tuple is referred

1s defined as the all-zero

as the location vector of the field element «'. For

each entry ay,,) of a MxN shift matrix S, we

m,n

expand it vertically into a (g-1)x<1 matrix A

m,n)

(m,n) 1

over GF(q) by multiplying o~ " with °, o', ..,

a’"? as follows:

917
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ne

olamm=1)
(“(m.m* 1)
a o
A(m,n) = ) (7)
Oé(”(m.m* 1)06((1* 2)
where """ " is a nonzero element of GF(q). For each

O-entry in the m-th row and n-th column of the MxN
shift matrix S, we expand it into a (g-1)x1 zero matrix
A, - This vertical expansion of a row into (q-1) rows
is referred to as the multiplicative (q-1)-fold vertical
expansion. Replacing each entry of 4, ,, by its location
vector. We obtain a (g-1)x(q-1) matrix b, over
GF(2). The the
multiplicative (q—1)—fold horizontal expansion. Then we

m,n)
replacement is referred to as

obtain the following MxN array of (g-1)x(g-1)
circulant permutation and/or zero matrix:
by bz - haw
hi1) Nia,2)
H=| . . by t)

hiag 1) Piar 2) -+ B,

If the entry in the m—th row and n-th column of S is a

nonzero entry a hy is a (g-1)x(g-1) circulant

m,n)? m,n)

permutation matrices. However, If the entry in the m-th
row and n-th column of S is a O-entry, hy, ,, is a (q-1)
x(q-1) zero matrix. The null space over GF(?2) of H
gives a QC LDPC code C over GF(2). Associated with B,
and By, the QC LDPC matrices H also have two classes,
H; and Hy,.

Lemma 4.1: The QC LDPC matrix H,
following two properties:
1) girth: 6 < g < 18;
2) density: r=1/(p"""V*q).

Lemma 42: The QC LDPC matrix Hj,
following two properties:
1) girth: 4 < g < 12;
2) density: r=1/(p' "sq).

Note that if we allow a sufficient large g, then the

has the

has the

short girth (G.e. 46) can be easily prevented and also
when q is large, the densities of H; and H,, are lower

than the density of the hybrid constructed codes in [1].
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Let EG(d,,p;') and EG(dyp,’) denote the Euclidean
geometries from which the base matrices and the
constituent matrices in Example g are constructed,
respectively. To construct the QC LDPC codes which
have the same code word length and code rate as the
codes constructed in Example 8m, we carefully choose
the parameters g, § and the Euclidean geometries EG
(d,p®) from which B, and B,; are constructed. With the
proposed hybrid approach, three QC LDPC codes are
constructed. The maximum achievable girth and the
density of these three codes and the codes in Example
g are compared in Table I. From this table we can see
that our codes have larger or equal girth and lower
density.

V. SIMULATION RESULTS

In the following, we give two examples of the
proposed QC LDPC codes. In computing the error
performance, in terms of the BER, with iterative
decoding using SPA, we assume binary phase-shift
keying (BPSK) transmission over an additive white
Gaussian noise (AWGN) channel.

Example 1: Consider the Euclidean geometry EG(3,
2) over GF(2), the points and the lines are given in
Table T Based on the points and lines, we
construct a 8 x 28 base matrix B,(6=7). With the
shift values assigning algorithm and the parameter g
= 128 shift value matrices S’s for girth 6, 8 10, 12
are constructed, respectively. H, is obtained by
vertical and horizontal expansions of the entries of
B, Figl shows the BER performance of their
corresponding QC LDPC codes. For a BER=10"° a
coding gain of more than 55dB is achieved over
uncoded BPSK system when the girth of the codes is
12.

Example 2: Consider the geometry EG(3, 2) over
GF(2). There are fourteen 2-flats given in Table I
" Based on the points and 2-flats, we construct a 8
x 14 base matrix B,(5§=7). With the shift values
assigning algorithm and the parameter q = 256, shift

==X M 47 HTCHH 11 2

(918)

4

QC LDPC girth=6
—<&— QC LDPC girth=8
—&— QC LDPC girth=10
—6— QC LDPC girth=12
Uncoded BPSK

10"

o =
% 10 F

107k

107"k

10*7 i i i i

0 2 4 6 8 10
Eb/No (dB)

a2l 1. o™ 1ollA QC LDPCe M=
Fig. 1. Performance of QC LDPC codes in Example 1.

value matrices S’s for girth 6, 8 are constructed,

respectively. B, is obtained by vertical and
horizontal expansions of the entries of B,. Fig.2
shows the BER performance of their corresponding
QC LDPC codes. For a BER =109, a coding gain of
more than 7.5dB is achieved over uncoded BPSK
system when the girth of the codes is 8.

F(2), the points and the lines are given in Table I
"I Based on the points and lines, we construct a 8 £
28 base matrix B, (+ = 7). With the shift values
assigning algorithm and the parameter q = 128, shift
value matrices S's for girth 6, 8 10, 12 are
constructed, respectively. H, is obtained by vertical
Fig.1

shows the BER performance of their corresponding
QC LDPC codes. For a BER = 10 6 a coding gain
of more than 55dB is achieved over uncoded BPSK

system when the girth of the codes is 12.

and horizontal expansions of the entries of B; .

Example 2: Consider the geometry EG(3; 2) over
GF(2). There are fourteen 2-flats given in Table I
“I Based on the points and 2-flats, we construct a 8
£ 14 base matrix By (£ = 7). With the shift values
assigning algorithm and the parameter q = 256, shift
value matrices S’s for girth 6, 8 are constructed,
respectively. H,, is obtained by vertical and horizontal
expansions of the entries of B, . Fig.2 shows the
BER performance of their corresponding QC LDPC
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—+&— QC LDPC girth=6
—&— QC LDPC girth=8
Uncoded BPSK

BER

Eb/No (dB)
a3 2. oA 20M QC LDPCel M=
Fig. 2. Performance of QC LDPC codes in Example 2.

codes. For a BER = 10 6, a coding gain of more
than 7.5dB is achieved over uncoded BPSK system
when the girth of the codes is 8.

VI. CONCLUSION

Based on the parallel bundle of lines and p-flats in
EG(d,p*), we construct the base matrices B’s with
girth 6 and 4, respectively. And based on the
multiplicative groups of finite fields, we constructed
the circulant permutation matrices. With these base
matrices and the circulant permutation matrices, a
hybrid approach to the construction of the QC LDPC
codes has been presented. Codes of this class have
larger girth and lower density than the hybrid
constructed codes in [1], which means that our codes

have good performance and lower coding complexity.
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