광통신 대역에서의 유전체 직각 릿지 표면 플라즈몬 도파로 해석

Analysis of Dielectric-Loaded Surface Plasmon Polariton Waveguides at Telecommunication Wavelengths

  • 투고 : 2010.07.19
  • 심사 : 2010.11.10
  • 발행 : 2010.11.25

초록

유전체 직각 릿지 표면 플라즈몬 도파로의 주요 파라미터인 모드 유효굴절률과 도파길이를 해석하였다. 여러 금속 및 유전체를 릿지의 폭과 두께를 변화시키며 유한요소법을 이용하여 계산하였다. 상반되는 두 파라미터를 포함하는 메트릭으로 2차원 figure of merit을 사용하였다. 계산결과를 이용하면 광통신 파장대역에서 파장이하로 모여 낮은 전파손실을 가진 도파로의 여러 파라미터 및 크기를 설계할 수 있다.

The main features of a dielectric-loaded surface plasmon polariton waveguide are analyzed such as mode effective index and propagation length. These parameters are calculated using the finite element method for different metal-polymer pairs while varying the ridge width and thickness. As a performance metric, we employ the 2D figure of merit including two conflicting parameters i.e. mode effective index and propagation length. The results obtained here allow one to identify the parameter range for realizing the dielectric-loaded surface plasmon polariton waveguide and to choose dimension and material of the ridge for subwavelength confinement and moderate propagation loss at telecom wavelengths.

키워드

참고문헌

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, (Springer-Verlag, Berlin, 1988).
  2. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today, Vol. 61, no. 5, pp.44-50, 2008. https://doi.org/10.1063/1.2930735
  3. Odysseas Tsilipakos, Traianos V. Yioultsis, and Emmanouil E. Kriezisa, "Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides," J. Appl. Phys., Vol. 106, pp. 093109, 2009. https://doi.org/10.1063/1.3256139
  4. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B Vol. 61, pp. 10484-10503, 2000. https://doi.org/10.1103/PhysRevB.61.10484
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett, Vol. 85, pp. 5833-5835, 2004. https://doi.org/10.1063/1.1835997
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett, Vol. 95, pp. 046802, 2005. https://doi.org/10.1103/PhysRevLett.95.046802
  7. T. Holmgaard, and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B Vol. 75, no. 24, pp. 245405, 2007. https://doi.org/10.1103/PhysRevB.75.245405
  8. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, "Wavelength selection by dielectric-loaded plasmonic components," Appl. Phys. Lett., Vol. 94, no. 5, pp. 051111, 2009 https://doi.org/10.1063/1.3078235
  9. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, "Gain-assisted propagation in a plasmonic waveguide at telecom wavelength," Nano Lett. Vol. 9, no. 8, pp. 2935-2939, 2009. https://doi.org/10.1021/nl901314u
  10. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, "Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths," Phys. Rev. B Vol. 78, no. 16, pp. 165431, 2008. https://doi.org/10.1103/PhysRevB.78.165431
  11. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express, Vol. 14, no. 26, pp. 13030-13042, 2006. https://doi.org/10.1364/OE.14.013030
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).